This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276026 a(n) = Sum_{k=0..7} (n + k)^2. 0
 140, 204, 284, 380, 492, 620, 764, 924, 1100, 1292, 1500, 1724, 1964, 2220, 2492, 2780, 3084, 3404, 3740, 4092, 4460, 4844, 5244, 5660, 6092, 6540, 7004, 7484, 7980, 8492, 9020, 9564, 10124, 10700, 11292, 11900, 12524, 13164, 13820, 14492, 15180, 15884, 16604, 17340, 18092, 18860, 19644, 20444, 21260, 22092, 22940 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sums of eight consecutive squares. More generally, the ordinary generating function for the sums of m consecutive squares of nonnegative integers is m*(1 - 2*x + 13*x^2 + 2*m^2 (1 - 2*x + x^2) - 3*m*(1 - 4*x + 3*x^2))/(6*(1 - x)^3). LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1) FORMULA O.g.f.: 4*(35 - 54*x + 23*x^2)/(1 - x)^3. E.g.f.: 4*(35 + 16*x + 2*x^2)*exp(x). a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). a(-n) = a(n-7). a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2 + (n+6)^2 + (n+7)^2. a(n) = 8*n^2 + 56*n + 140. EXAMPLE a(0) = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 140; a(1) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 = 204; a(2) = 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 = 284, etc. MATHEMATICA Table[8 n^2 + 56 n + 140, {n, 0, 50}] LinearRecurrence[{3, -3, 1}, {140, 204, 284}, 51] PROG (PARI) a(n)=8*n^2+56*n+140 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A001844, A005918, A027575, A027578, A027865, A260637. Sequence in context: A256085 A054573 A131492 * A259718 A090945 A140798 Adjacent sequences:  A276023 A276024 A276025 * A276027 A276028 A276029 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Aug 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 18:58 EDT 2019. Contains 328127 sequences. (Running on oeis4.)