login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131492
Numbers n such that the sum of the Carmichael lambda functions of the divisors is a proper divisor of n.
2
140, 189, 378, 1375, 2750, 2775, 2997, 4524, 5550, 5661, 5994, 6375, 11253, 11322, 12750, 13416, 13505, 22506, 25925, 27010, 27511, 30613, 32208, 32513, 32760, 45917, 49665, 49959, 51850, 55022, 61061, 61226, 65026, 67488, 91834, 93605
OFFSET
1,1
COMMENTS
The auxiliary sequence defined by b(n)=sum_{d|n} A002322(d) starts 1,2,3,4,5,6,7,6,9,10,11,10,13,14,11,10,17,18,19,16,...
The auxiliary sequence is A141258. [Reinhard Zumkeller, Feb 17 2012]
LINKS
W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 31-42.
FORMULA
n such that (sum_{d|n} A002322(d)) | n.
MATHEMATICA
Select[ Range[100000], Divisible[#, s = Total[ CarmichaelLambda /@ Divisors[#]]] && s < # &] (* Jean-François Alcover, Jun 24 2013 *)
PROG
(PARI) lambda(p, alpha)={ if(p>=3 || alpha<=2, return(p^(alpha-1)*(p-1)), return(2^(alpha-2)) ; ) ; } A002322(n)={ local(pf, rmax, resul) ; if(n==1, return(1) ) ; pf=factor(n) ; rmax=matsize(pf)[1] ; resul= lambda(pf[1, 1], pf[1, 2]) ; for(r=2, rmax, resul=lcm(resul, lambda(pf[r, 1], pf[r, 2])) ; ) ; return(resul) ; } b(n)={ sumdiv(n, d, A002322(d)) ; } { for(n=1, 120000, l=b(n) ; if( l != 1 && l != n && n%l==0, print1(n, ", ") ) ; ) ; }
CROSSREFS
Sequence in context: A224982 A256085 A054573 * A276026 A259718 A090945
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 29 2007
STATUS
approved