login
A090945
Harmonic numbers (A001599) which are not perfect (A000396).
4
1, 140, 270, 672, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
OFFSET
1,2
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..930 (terms below 10^14; terms 1..77 from Muniru A Asiru)
T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.
EXAMPLE
A001599(4) = 140, but 336 = sigma(140) <> 2*140 = 280. Thus, 140 is a harmonic number which is not perfect. - Muniru A Asiru, Nov 26 2018
MATHEMATICA
Select[Range[2 10^7], IntegerQ[HarmonicMean[Divisors[#]]] && !DivisorSigma[1, #]==2 # &] (* Vincenzo Librandi, Nov 27 2018 *)
PROG
(GAP) Concatenation([1], Filtered([2, 4..2000000], n->Sigma(n)<>2*n and IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
(PARI) isok(n) = my(sn = sigma(n)); (frac(n*numdiv(n)/sn) == 0) && (sn != 2*n); \\ Michel Marcus, Nov 28 2018
CROSSREFS
Cf. A001599, A003601. Different from A007340.
For the associated harmonic means, see A102408.
Sequence in context: A131492 A276026 A259718 * A140798 A325022 A337689
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 28 2004
STATUS
approved