login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325022
Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is not an integer, where k-tau(k) = the number of nondivisors of k (A049820), tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).
6
140, 270, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 360360, 539400, 726180, 753480, 950976, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000, 2845800, 4358600, 4713984, 4754880, 5772200, 6051500
OFFSET
1,1
COMMENTS
Numbers m such that sigma(m) divides m*tau(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325021 with respect to A001599.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..682 (terms below 10^14)
EXAMPLE
140 is a term because 140*(140-tau(140))/sigma(140) = 140*(140-12)/336 = 160/3.
MATHEMATICA
Select[Range[10^5], And[IntegerQ@ HarmonicMean@ #4, ! IntegerQ[#1 (#1 - #2)/#3]] & @@ Append[{#}~Join~DivisorSigma[{0, 1}, #], Divisors@ #] &] (* Michael De Vlieger, Mar 30 2019 *)
PROG
(Magma) [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
(PARI) isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && frac(m*(m-d)/s); \\ Michel Marcus, Mar 28 2019
(Python)
from itertools import count, islice
from math import prod
from functools import reduce
from sympy import factorint
def A325022_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue, 1)):
f = factorint(n)
s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
if n*n%s and not reduce(lambda x, y:x*y%s, (e+1 for e in f.values()), 1)*n%s:
yield n
A325022_list = list(islice(A325022_gen(), 10)) # Chai Wah Wu, Feb 14 2023
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 28 2019
STATUS
approved