

A141258


Inverse Mobius transform of the Carmichael lambda function.


5



1, 2, 3, 4, 5, 6, 7, 6, 9, 10, 11, 10, 13, 14, 11, 10, 17, 18, 19, 16, 15, 22, 23, 14, 25, 26, 27, 22, 29, 22, 31, 18, 23, 34, 23, 28, 37, 38, 27, 22, 41, 30, 43, 34, 29, 46, 47, 22, 49, 50, 35, 40, 53, 54, 35, 30, 39, 58, 59, 34, 61, 62, 27, 34, 29, 46, 67, 52, 47, 46, 71, 38
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

nth term = prime when n is prime.
This sequence is used in A131492 as an auxiliary sequence.  Reinhard Zumkeller, Feb 17 2012
a(n) = sum(A002322(A027750(n,k)): k = 1..A000005(n)). Reinhard Zumkeller, Sep 02 2014


LINKS

Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 3142.


FORMULA

a(n) = sum_{dn} A002322(d).


EXAMPLE

a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (1, 1, 2, 2, 4, 2) = (1 + 1 + 2 + 0 + 0 + 2); where (1, 1, 1, 0, 0, 1) = row 6 of triangle A051731.


MATHEMATICA

A141258[n_] := DivisorSum[n, CarmichaelLambda[#]&];
Table[A141258[n], {n, 1, 20}] (* Enrique Pérez Herrero, Apr 22 2014 *)


PROG

(PARI) a(n) = sumdiv(n, d, lcm(znstar(d)[2])); \\ see PARI script in A002322; Michel Marcus, Apr 22 2014
(Haskell)
a141258 = sum . map a002322 . a027750_row
 Reinhard Zumkeller, Sep 02 2014


CROSSREFS

Cf. A002322.
Cf. A131492, A027750, A061258.
Sequence in context: A161658 A066853 A264856 * A117656 A101918 A291169
Adjacent sequences: A141255 A141256 A141257 * A141259 A141260 A141261


KEYWORD

nonn


AUTHOR

Gary W. Adamson, Jun 18 2008


EXTENSIONS

More terms from R. J. Mathar, Jan 19 2009


STATUS

approved



