login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141255 Total number of line segments between points visible to each other in a square n X n lattice. 2
0, 6, 28, 86, 200, 418, 748, 1282, 2040, 3106, 4492, 6394, 8744, 11822, 15556, 20074, 25456, 32086, 39724, 48934, 59456, 71554, 85252, 101250, 119040, 139350, 161932, 187254, 215136, 246690, 280916, 319346, 361328, 407302, 457180, 511714, 570232 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A line segment joins points (a,b) and (c,d) if the points are distinct and gcd(c-a,d-b)=1.

LINKS

Table of n, a(n) for n=1..37.

S. Mustonen, On lines going through a given number of points in a rectangular grid of points [From Seppo Mustonen, May 13 2010]

FORMULA

a(n) = A114043(n) - 1.

EXAMPLE

The 2 x 2 square lattice has a total of 6 line segments: 2 vertical, 2 horizonal and 2 diagonal.

MATHEMATICA

Table[cnt=0; Do[If[GCD[c-a, d-b]<2, cnt++ ], {a, n}, {b, n}, {c, n}, {d, n}]; (cnt-n^2)/2, {n, 20}]

Contribution from Seppo Mustonen, May 13 2010: (Start)

(* This recursive code is much more efficient. *)

a[n_]:=a[n]=If[n<=1, 0, 2*a1[n]-a[n-1]+R1[n]]

a1[n_]:=a1[n]=If[n<=1, 0, 2*a[n-1]-a1[n-1]+R2[n]]

R1[n_]:=R1[n]=If[n<=1, 0, R1[n-1]+4*EulerPhi[n-1]]

R2[n_]:=(n-1)*EulerPhi[n-1]

Table[a[n], {n, 1, 37}]

(End)

CROSSREFS

Cf. A141224.

Sequence in context: A279915 A222198 A055711 * A091321 A125310 A138874

Adjacent sequences:  A141252 A141253 A141254 * A141256 A141257 A141258

KEYWORD

nonn

AUTHOR

T. D. Noe, Jun 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 03:22 EDT 2017. Contains 289648 sequences.