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2 S.Mustonen: On lines going through a given number of points in a rectangular grid of points

The studies presented in [3] are continued by examining the number of lines going
exactly through j points in an m × n rectangular grid of points. This number is
denoted Lj(m, n) and it has been proved in [3] (p.4) that, by denoting f(m, n, j) =
Fj(m, n),

(1) Lj(m, n) =
1

2
[Fj+1(m, n) − 2Fj(m, n) + Fj−1(m, n)]

where

(2) Fj(m, n) =
∑

−n<x<n
−m<y<m
(x,y)=j

(n − |x|)(m− |y|).

The formula (1) is slow in computations when using (2). As in case of the
L(n, n) numbers, 1 a much faster recursive formula is available but now for the
Fj(n, n) = Fj(n) numbers. It reads

Fj(n, n) = 2Fj(n − 1, n) − Fj(n − 1, n − 1) + Rj1(n),

Fj(n − 1, n) = 2Fj(n − 1, n − 1) − Fj(n − 2, n− 1) + Rj2(n)
(3)

where

(4) Rj1(n) = Rj1(n − 1) + 8S(n, j),

(5) S(n, j) =

{

φ((n − 1)/j) if j | n − 1;

0 if j - n − 1

and

(6) Rj2(n) = 2(n − 1)S(n, j)

with initial values

(7) F (n, n) = F (n − 1, n) = Rj1(n) = 0, n ≤ j.

This set of formulas was found by a numerical experiment using tools of the
Survo system. Let’s study the case j = 3 as an example. The following setup taken
directly from a Survo edit field illustrates how the recursive formula for F3(n, n)
becomes exposed.

1The recursive formula for L(n,n) =
P

n
j=2

Lj(n, n) was found in [3] and it has been proved

in [2].
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____________________________________________________________

*DATA F3NN,A,B,N,M

M 11 11111 11111 11111 12 12 12

N n F3nn F3n1n F3n1n1 Res d phi

A 2 0 0 - - - 0

* 3 0 0 0 0 - 0

* 4 20 6 0 1 1 1

* 5 56 34 20 1 0 0

* 6 108 78 56 1 0 0

* 7 208 150 108 2 1 1

* 8 340 266 208 2 0 0

* 9 504 414 340 2 0 0

* 10 788 630 504 4 2 2

* 11 1136 946 788 4 0 0

* 12 1548 1326 1136 4 0 0

* 13 2136 1818 1548 6 2 2

* 14 2820 2454 2136 6 0 0

* 15 3600 3186 2820 6 0 0

* 16 4748 4134 3600 10 4 4

* 17 6056 5362 4748 10 0 0

* 18 7524 6750 6056 10 0 0

* 19 9312 8370 7524 12 2 2

* 20 11292 10254 9312 12 0 0

* 21 13464 12330 11292 12 0 0

* 22 16380 14850 13464 18 6 6

* 23 19584 17910 16380 18 0 0

* 24 23076 21258 19584 18 0 0

* 25 27272 25086 23076 22 4 4

* 26 31820 29458 27272 22 0 0

* 27 36720 34182 31820 22 0 0

* 28 42668 39582 36720 28 6 6

* 29 49064 45754 42668 28 0 0

B 30 55908 52374 49064 28 0 0

*

*VAR Res=(F3nn-2*F3n1n+F3n1n1)/8 TO F3NN

*VAR d=Res-Res[-1] TO F3NN

*VAR phi=if(mod(n,3)=1)then(totient((n-1)/3))else(0) TO F3NN

____________________________________________________________

At first it was detected by linear regression that
F3(n, n) ≈ 2F3(n − 1, n) − F3(n − 1, n − 1). The columns F3nn, F3n1n, F3n1n1
corresponding to F3(n, n), F3(n − 1, n), and F3(n − 1, n − 1), respectively were
computed by (2). Actually the calculations were made with larger data sets in
order to ensure the results. Since it was observed that all residuals are divisible
by 8, they were divided by this number. When seeing them it was natural to take
differences d. Thereafter it could be seen that d values are equal to φ((n − 1)/3)
when n ≡ 1 (mod 3) and zero otherwise.

By reversing these calculations, it is easy to confirm the validity of the recursion
formula (3) for F3(n, n). The same structure was found also for j values 2 and 4.
The special case is j = 1 where the structure prevails unconditionally.

The second part of recursion formulas (3) was established for j = 3 by a similar
Survo application:
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____________________________________________________________

*DATA F3N1N,a,b,n,m

m 11 11111 11111 11111 111 111

n n F3n1n F3n1n1 F3n2n1 Res phi2

a 2 0 - - - 0

* 3 0 0 0 0 0

* 4 6 0 0 3 3

* 5 34 20 6 0 0

* 6 78 56 34 0 0

* 7 150 108 78 6 6

* 8 266 208 150 0 0

* 9 414 340 266 0 0

* 10 630 504 414 18 18

* 11 946 788 630 0 0

* 12 1326 1136 946 0 0

* 13 1818 1548 1326 24 24

* 14 2454 2136 1818 0 0

* 15 3186 2820 2454 0 0

* 16 4134 3600 3186 60 60

* 17 5362 4748 4134 0 0

* 18 6750 6056 5362 0 0

* 19 8370 7524 6750 36 36

* 20 10254 9312 8370 0 0

* 21 12330 11292 10254 0 0

* 22 14850 13464 12330 126 126

* 23 17910 16380 14850 0 0

* 24 21258 19584 17910 0 0

* 25 25086 23076 21258 96 96

* 26 29458 27272 25086 0 0

* 27 34182 31820 29458 0 0

* 28 39582 36720 34182 162 162

* 29 45754 42668 39582 0 0

b 30 52374 49064 45754 0 0

*

*VAR Res=(F3n1n-2*F3n1n1+F3n2n1)/2 TO F3N1N

*VAR phi2=if(mod(n,3)=1)then((n-1)*totient((n-1)/3))else(0) TO F3N1N

____________________________________________________________

The validity of recursive formulas was confirmed systematically for n ≤ 1000,
j = 1, 2, 3, 4 and separately for certain greater values. For example, it was found
that L3(60000) = 2407391284632795940 also when the corresponding F3 values
were computed recursively.

By computing values of Lj(n) for huge n values through recursively computed
Fj(n) values gives a possibility to study their asymptotic behaviour.
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On the basis of the formulas (3) – (7) the following Mathematica code was
created:

nn=10^6;

j=1;

F[n_]:=F[n]=If[n<=j,0,2*F1[n]-F[n-1]+R1[n]]

F1[n_]:=F1[n]=If[n<=j,0,2*F[n-1]-F1[n-1]+R2[n]]

R1[n_]:=R1[n]=If[n<=j,0,R1[n-1]+8*S[n]]

R2[n_]:=2*(n-1)*S[n]

S[n_]:=If[Mod[n-1,j]==0,EulerPhi[(n-1)/j],0]

Table[F[n],n,1,nn];

F[nn]

By changing nn and j the value of any Fj(n) can be calculated. Thus for n = 106

the following values were obtained:
F1: 607927101897802895986964
F2: 151981775424922694172752
F3: 67547455720880127685124
giving by (3) L2(106) = 185755503384418817663292 .

Since in [3] it was found 2 that L(n) is asymptotically equal to [3/(2π)]2n4 or
(c/π2)n4 where c = 9/4, it is natural to expect that also Lj(n) is asymptotically of
the form (cj/π2)n4 with decreasing rational constants cj. For n = 106 an approxi-
mation of c2 will be

c′2 = 185755503384418817663292/n4π2 = 1.8333333337294289

and gives good reasons to assume that c2 = 11/6.
For detecting proper values of cj for greater j it is best to study the asymptotic

behaviour of Fj(n). It turns out that the corresponding coefficients, say dj, for
them, according to similar computations, are

j 1 2 3 4 5 6 7 8
dj 6 3/2 2/3 3/8 6/25 1/6 6/49 6/64

Then it easy to see that each dj multiplied by j2 gives a constant 6. Thus it is
evident that in general we have dj = 6/j2 and Fj(n) = [6/(jπ)2]n4 asymptotically.
It is also plausible that the error term is of the order O(n2.5) as it is for L(n).

Thus my conjecture is

(8) Fj(n) = [6/(jπ)2]n4 + O(n2.5).

2My conjecture, based on numerical experiments, was L(n) = [3/(2π)]2n4 + O(n2.5) and this

has now been proved in [2] on the condition that the Riemann hypothesis is true.
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Corresponding asymptotic results for Lj(n) numbers can then be represented
simply by using (1) and we have

(9) Lj(n) = 3[1/(j + 1)2 − 2/j2 + 1/(j − 1)2]/π2n4 + O(n2.5), j = 2, 3, . . . .

Thus asymptotic values proportionally to L(n) are
p(j) = 3[1/(j + 1)2 − 2/j2 + 1/(j − 1)2]/(9/4) and numerically

j p(j)
2 0.814815
3 0.120370
4 0.034814
5 0.013704
6 0.006470
7 0.003449
8 0.002005
9 0.001245

10 0.000814
11 0.000554
12 0.000390
13 0.000283
14 0.000210
15 0.000159

sum 0.999282

It may seem almost paradoxical that from lines going through at least two points
a great majority (81.5 percent) actually go through two points only.

Proof of the recursive formulas (3)

At first two basic formulas are presented. We have

(10)

n
∑

i=1
(i,n)=j

1 = S(n + 1, j)

where S(n + 1, j) is defined according to (5). If j - n, this sum is zero. If j | n, by
denoting i′ = i/j, n′ = n/j, we have

n
∑

i=1
(i,n)=j

1 =

n
′

∑

i′=1
(i′,n′)=1

1 = φ(n′) = φ(n/j)

and thus (10) has been proved. The second formula is

(11)

n
∑

i=1
(i,n)=j

i =

n
∑

i=1
(i,n)=j

(n − i) =
1

2
S(n + 1, j).
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Again for j - n this sum is zero. If j | n, by reversing the order of ’applicable’
summands we see that the two sums in (11) are equal. By taking their sum we
obtain

n
∑

i=1
(i,n)=j

i +

n
∑

i=1
(i,n)=j

(n − i) = n

n
∑

i=1
(i,n)=j

1 = nφ(n/j).

Then
n

∑

i=1
(i,n)=j

i =
1

2
nφ(n/j)

and also (11) has been proved.

Now to the actual proof of (3):
Using (2) for Rj1(n) a typical summand is

a1(n, x, y) = (n − |x|)(n− |y|) − 2(n − 1 − |x|)(n − |y|) + (n − 1 − |x|)(n− 1 − |y|)

with following alternatives

a1(n, x, y) =











1 + |x| − |y|, |x|, |y| = 0, 1, . . . , n− 2;

n − |y|, |x| = n − 1;

|x| − n + 2, |y| = n − 1.

Non-positive indexes are avoided by writing (2) in the form (taking cases |x| =
j, y = 0 and x = 0, |y| = j apart)

(12) Fj(m, n) = 2[m(n − j) + (m − j)n] + 4
∑

0<x<n
0<y<m
(x,y)=j

(n − x)(m − y).

Then 3

Rj1(n) = Fj(n, n) − 2Fj(n − 1, n) + Fj(n − 1, n− 1)

(13)

= 4 + 4
∑

0<x<n−1
0<y<n−1
(x,y)=j

(1 + x− y) + 4
∑

0<x<n

(x,n−1)=j

(x − n + 2) + 4
∑

0<y<n

(y,n−1)=j

(n − y)

= 4 + 4 × [2

n−2
∑

x=1

x
∑

y=1
(x,y)=j

1 − 1] + 4

n−1
∑

x=1
(x,n−1)=j

2 = 4 × 2

n−2
∑

x=1

x
∑

y=1
(x,y)=j

1 + 4

n−1
∑

x=1
(x,n−1)=j

2

= 8

n−2
∑

x=1

S(x + 1, j) + 8S(n, j) according to (10)

= 8

n−1
∑

x=1

S(x + 1, j) = Rj1(n − 1) + 8S(n, j).

3The 2[m(n−j)+(m−j)n] terms when computing Rj1(n) give 4 and when computing Rj2(n)
they give 0. Reduction−1 on the third line of this formula is due to the case (j, j) which otherwise

would be included twice.
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Similarly, by (2) a typical summand for for Rj2(n) is

a2(n, x, y) = (n−1−|x|)(n−|y|)−2(n−1−|x|)(n−1−|y|)+(n−2−|x|)(n−1−|y|)

with following alternatives

a2(n, x, y) =











|y| − |x|, |x|, |y| = 0, 1, . . . , n− 2;

0, |x| = n − 1;

n − 1 − |x|, |y| = n − 1.

Then by using (12)

Rj2(n) = Fj(n − 1, n) − 2Fj(n − 1, n− 1) + Fj(n − 2, n − 1)(14)

= 4
∑

0<x<n−1
0<y<n−1
(x,y)=j

(y − x) + 4

n−1
∑

x=1
(x,n−1)=j

(n − 1 − x)

= 0 + 2(n − 1)S(n, j) according to (11).

Also the recursive formulas (21) in [3] can now be proved 4 by formulas (3) here
and (7) in [3] by showing that

(15) R1(n) =
1

2
[R11(n) − R21(n)]

and

(16) R2(n) =
1

2
[R12(n) − R22(n)].

For example, we have

L(n, n) − R1(n) = 2L(n − 1, n)− L(n − 1, n− 1)

(17)

= F1(n − 1, n) − F2(n − 1, n) −
1

2
F1(n − 1, n− 1) +

1

2
F2(n − 1, n − 1)

=
1

2
[2F1(n − 1, n) − F1(n − 1, n − 1)] −

1

2
[2F2(n − 1, n) − F2(n − 1, n− 1)]

=
1

2
[F1(n, n)− R11(n)] −

1

2
[F2(n, n)− R21(n)]

=
1

2
[F1(n, n)− F2(n, n)] −

1

2
[R11(n) − R21(n)]

= L(n, n) −
1

2
[R11(n) − R21(n)]

giving (15).
It is then easy to show that R1(n) and R2(n) obtained by formulas (15) and (16)

are the same as those given in [3]. In the second case, identities φ(4k) = 2φ(2k)
and φ(4k + 2) = φ(2k + 1) are needed. They are special cases of the well-known
formula φ(mn) = φ(m)φ(n)(d/φ(d)) where d = gcd(m, n).

4A different proof has been presented in [2].
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Combinatorial interpretations of the F numbers

According to my considerations in [3] (Section 3) the number of line segments
connecting j + 1 points in an m × n grid is Fj(m, n)/2. Those line segments may
be partially overlapped when j > 1.

The integer sequence F1(n, n)/2, n = 1, 2, · · · = 0, 6, 28, 86, 200, 418 . . . is pre-
sented in Sloane’s Encyclopedia [4] as a sequence A141255 with a related definition
”Total number of line segments between points visible to each other in a square
n × n lattice”. 5

Similarly, Fj(m, n)/2 could then be characterized as the total number of line
segments between points visible to each other exactly through j − 1 points in a
regular m× n grid of points.

Also F1(m, n)/2 is the number of ways to divide the points into two nonempty
sets using a straight line in an m × n grid of points. I noticed this relation when
seeing in the description of A141255 that A141255(n) =A114043(n)− 1.

l’

l

In fact, there is an bijection (one-to-one correspondence) between line segments
between points visible to each other and such divisions into nonempty subsets in an
m × n grid of points. This bijection is defined by taking any pair of points visible
to each other and drawing the line l connecting them. If the slope of the line is
non-negative and the direction angle is less than π/2, a new line l′ is made by an
infinitesimal rotation of the line l counterclockwise around the leftmost point. The
line l′ then defines the division of the points to two nonempty subsets corresponding
to the selected points so that the only gridpoint on the line l′ and points below
that line form the first subset. The line l may contain several applicable line
segments. The procedure just described attaches each of them to a different division
of the points. The line segments on different lines cannot produce any of divisions
produced by l. Thus no two line segments cannot determine the same division
to subsets. There is one special case. The first horizontal line segment s1 in the

5I have submitted sequences Fj(n)/2, j = 2, 3,4,5, 6,7,8, 9 as A177719 – A177726 to [4] on 13

May 2010.
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upper left corner of the grid produces the entire set set of gridpoints. On the other
hand, the division d1 where the other subset consist of the single gridpoint in the
lower right corner is generated by no line segment. The required bijection is then
completed by letting s1 correspond to d1.

The same procedure applies to negative slopes by rotating the entire setup by
90 degrees.

If the number of line segments between points visible to each other is denoted N1

and the number of divisions by a straight lines by N2, it thus shows that N1 ≤ N2.
Let l be a line with a non-negative slope and dividing the gridpoints into two

nonempty disjoint subsets S1 and S2 and let S2 be the set of gridpoints on l or
below it. If no gridpoint locates on l, the line can be moved downwards until
it encounters a gridpoint P as a line l′. If P is on the highest level in S2, l′

is rotated counterclockwise around P until it meets another gridpoint. The line
thus created still separates subsets S1 and S2 and it can go through even more
gridpoints. The line segment between the two first of them from left to right is the
one corresponding to the division defined by l. The second alternative is that P is
on the lowest level in S2. The the same situation is attained by rotating l clockwise
around P . The remaining alternative is that there are gridpoints belonging to S2

both above P and below P . By a rotation of l′ clockwise around P at least one
gridpoint above it in S2 will be met. Then P and the first of those gridpoints define
a line segment corresponding to division specified by l. P in this ’middle case’ is
uniquely determined since if there were another point with a similar property, this
would eventually lead to N1 > N2.

The only exeption is division d1 (no second point for defining a line segment)
which is mapped to s1.

It is clear that no two divisions cannot correspond to the same line segment.
Since a corresponding construction is possible also for lines with a negative slope,

we have N2 ≤ N1. Combining these results leads to N1 = N2.
The division of a grid by a straight line into two subsets has been studied in [1].

On the basis of the above bijection it is clear that another (maybe simpler?) proof
for Theorem 2 in [1] is obtained. It is also evident that L(m, n) corresponds to the
number of stable two-dimensional threshold functions and F1(m, n)/2−L(m, n) =
F2(m, n)/2 to the number of unstable such functions according to (7) in [3].
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