The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290131 Number of regions in a regular drawing of the complete bipartite graph K_{n,n}. 24
 0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 Martin Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5. See Lemma 2 and Table 1. Stéphane Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009. N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence) Eric Weisstein's World of Mathematics, Complete Bipartite Graph FORMULA a(n) = A115004(n-1) + (n-1)^2. a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021 MAPLE A115004 := proc(n)     local a, b, r ;     r := 0 ;     for a from 1 to n do     for b from 1 to n do         if igcd(a, b) = 1 then             r := r+(n+1-a)*(n+1-b);         end if;     end do:     end do:     r ; end proc: A290131 := proc(n)     A115004(n-1)+(n-1)^2 ; end proc: seq(A290131(n), n=1..30) ; MATHEMATICA z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}]; a[n_] := z[n - 1] + (n - 1)^2; Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *) PROG (Python) from math import gcd def a115004(n):     r=0     for a in range(1, n + 1):         for b in range(1, n + 1):             if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)     return r def a(n): return a115004(n - 1) + (n - 1)**2 print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code (Python) from sympy import totient def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 16 2021 CROSSREFS Cf. A115004, A159065, A290132, A331754. For K_n see A007569, A007678, A135563. The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020 Sequence in context: A086602 A019006 A168057 * A008911 A005719 A143126 Adjacent sequences:  A290128 A290129 A290130 * A290132 A290133 A290134 KEYWORD nonn,easy AUTHOR R. J. Mathar, Jul 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 17:59 EDT 2022. Contains 356107 sequences. (Running on oeis4.)