login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290131
Number of regions in a regular drawing of the complete bipartite graph K_{n,n}.
29
0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498
OFFSET
1,2
LINKS
Martin Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5. See Lemma 2 and Table 1.
Stéphane Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
FORMULA
a(n) = A115004(n-1) + (n-1)^2.
a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021
MAPLE
A290131 := proc(n)
A115004(n-1)+(n-1)^2 ;
end proc:
seq(A290131(n), n=1..30) ;
MATHEMATICA
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[n_] := z[n - 1] + (n - 1)^2;
Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
PROG
(Python)
from math import gcd
def a115004(n):
r=0
for a in range(1, n + 1):
for b in range(1, n + 1):
if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)
return r
def a(n): return a115004(n - 1) + (n - 1)**2
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
(Python)
from sympy import totient
def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2, n)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
For K_n see A007569, A007678, A135563.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Sequence in context: A019006 A363123 A168057 * A008911 A005719 A143126
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 20 2017
STATUS
approved