login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143126
a(n) = (1-2n)*2^n.
1
1, -2, -12, -40, -112, -288, -704, -1664, -3840, -8704, -19456, -43008, -94208, -204800, -442368, -950272, -2031616, -4325376, -9175040, -19398656, -40894464, -85983232, -180355072, -377487360, -788529152, -1644167168, -3422552064, -7113539584, -14763950080
OFFSET
0,2
COMMENTS
Hankel transform of abs(A002420) (which is 2*0^n - binomial(2n,n)/(2n-1)).
FORMULA
G.f.: (1-6x)/(1-2x)^2;
a(n) = Sum_{k=0..n} A121314(n,k)*(-1)^k*2^(3n-2k). - Philippe Deléham, Oct 31 2008
From Amiram Eldar, Oct 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 - arcsinh(1)/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = 1 + arctan(1/sqrt(2))/sqrt(2). (End)
MATHEMATICA
a[n_] := (1-2n)*2^n; Array[a, 40, 0] (* Amiram Eldar, Oct 01 2022 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 26 2008
STATUS
approved