The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143128 a(n) = Sum_{k=1..n} k*sigma(k). 17
1, 7, 19, 47, 77, 149, 205, 325, 442, 622, 754, 1090, 1272, 1608, 1968, 2464, 2770, 3472, 3852, 4692, 5364, 6156, 6708, 8148, 8923, 10015, 11095, 12663, 13533, 15693, 16685, 18701, 20285, 22121, 23801, 27077, 28483, 30763, 32947, 36547 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Partial sums of A064987. - Omar E. Pol, Jul 04 2014
a(n) is also the volume after n-th step of the symmetric staircase described in A244580 (see also A237593). - Omar E. Pol, Jul 31 2018
In general, for j >= 1 and m >= 0, Sum_{k=1..n} k^m * sigma_j(k) ~ n^(j+m+1) * zeta(j+1) / (j+m+1). - Daniel Suteu, Nov 21 2018
LINKS
FORMULA
Sum {k=1..n} k*sigma(k), where sigma(n) = A000203: (1, 3, 4, 7, 6, 12, ...) and n*sigma(n) = A064987: (1, 6, 12, 28, ...). Equals row sums of triangle A110662. - Emeric Deutsch, Aug 12 2008
a(n) ~ n^3 * Pi^2/18. - Charles R Greathouse IV, Jun 19 2012
G.f.: x*f'(x)/(1 - x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) = Sum_{k=1..n} k^2/2 * floor(n/k) * floor(1 + n/k). - Daniel Suteu, May 29 2018
a(n) = A256533(n) - A175254(n-1), n >= 2. - Omar E. Pol, Jul 31 2018
a(n) = Sum_{k=1..s} (k*A000330(floor(n/k)) + k^2*A000217(floor(n/k))) - A000330(s)*A000217(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020
a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i*k^2. - Wesley Ivan Hurt, Nov 26 2020
EXAMPLE
a(4) = 47 = (1 + 6 + 12 + 28) where A064987 = (1, 6, 12, 28, 30, ...).
a(4) = 47 = sum of row 4 terms of triangle A110662 = (15 + 14 + 11 + 7).
MAPLE
with(numtheory): a:=proc(n) options operator, arrow: sum(k*sigma(k), k=1..n) end proc: seq(a(n), n=1..40); # Emeric Deutsch, Aug 12 2008
MATHEMATICA
Table[Sum[i*DivisorSigma[1, i], {i, n}], {n, 50}] (* Wesley Ivan Hurt, Jul 06 2014 *)
PROG
(PARI) a(n)=sum(k=1, n, k*sigma(k)) \\ Charles R Greathouse IV, Apr 27 2015
(PARI) f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
g(n) = n*(n+1)/2; \\ A000217
a(n) = sum(k=1, sqrtint(n), k * f(n\k) + k^2 * g(n\k)) - f(sqrtint(n)) * g(sqrtint(n)); \\ Daniel Suteu, Nov 26 2020
(Magma) [(&+[k*DivisorSigma(1, k): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 21 2018
(Sage) [sum(k*sigma(k, 1) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Nov 21 2018
(Python)
def A143128(n): return sum(k**2*(m:=n//k)*(m+1)>>1 for k in range(1, n+1)) # Chai Wah Wu, Oct 20 2023
(Python)
from math import isqrt
def A143128(n): return ((-((s:=isqrt(n))*(s+1))**2*(2*s+1)>>1) + sum((q:=n//k)*(q+1)*k*(3*k+2*q+1) for k in range(1, s+1)))//6 # Chai Wah Wu, Oct 21 2023
CROSSREFS
Sequence in context: A155273 A277613 A278403 * A238730 A139865 A146403
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 26 2008
EXTENSIONS
Corrected and extended by Emeric Deutsch, Aug 12 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)