login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277613
Logarithmic derivative of the g.f. of the solid partitions A000293.
2
1, 7, 19, 47, 76, 145, 183, 319, 433, 762, 1068, 1625, 1457, 511, -2696, -7617, -12494, -8999, 14802, 78682, 195984, 363458, 530289, 574297, 252976, -820475, -3259007, -7929105, -15918795, -27966750, -42783874, -52969921, -37772397, 47098898, 278012363, 759015293, 1583148046, 2729030066, 3860814119, 4015793914, 1214574612, -7871995868, -27884564061, -63760120938, -117678872282, -182313402679, -228194585696, -183355932567, 93528356566, 836233409412, 2360489258476, 4956621402741, 8577450776595, 12176709992155, 12572248705543, 2874527812671, -29026344726969, -100513507605919, -229939345736773, -423043591887710, -643162163240861, -757839109104688, -458886747576888, 831588355306815, 4020413344163097, 10249469548463477, 20417504944664974, 33937902760293134, 46224437161712292, 44445354551818961, 1635692222011481, -129140996172417587
OFFSET
1,2
COMMENTS
Based on the solid partitions calculated by Suresh Govindarajan and listed in A000293.
Finding a formula for this sequence is an unsolved problem; at first it was thought to be A278403, where: Sum_{n>=1} A278403(n)*x^n/n = log( Product_{n>=1} 1/(1 - x^n)^(n*(n+1)/2) ).
LINKS
EXAMPLE
L.g.f.: L(x) = x + 7*x^2/2 + 19*x^3/3 + 47*x^4/4 + 76*x^5/5 + 145*x^6/6 + 183*x^7/7 + 319*x^8/8 + 433*x^9/9 + 762*x^10/10 + 1068*x^11/11 + 1625*x^12/12 +...
such that
exp(L(x)) = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + 140*x^6 + 307*x^7 + 684*x^8 + 1464*x^9 + 3122*x^10 + 6500*x^11 + 13426*x^12 +...+ A000293(n)*x^n +...
CROSSREFS
Sequence in context: A372881 A155415 A155273 * A278403 A143128 A238730
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 20 2016
STATUS
approved