login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277611
Expansion of 1 / (1 - Sum_{k>=1} k^(k-2) * x^k ).
3
1, 1, 2, 6, 27, 180, 1678, 20388, 305331, 5423511, 111282445, 2587931469, 67239205808, 1929910531883, 60636166356164, 2069775112992573, 76268207153351225, 3017346008698599752, 127561003043924116908, 5738904556162964523209, 273764048456544759900846, 13802374108958236134168506, 733335098861491664742838394, 40953333749038944871704984923, 2398217239830108487402017089693, 146949291558772355319517897103987
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n^(n-2) * (1 + 2*exp(-1)/n). - Vaclav Kotesovec, Nov 06 2016
a(0) = 1; a(n) = Sum_{k=1..n} k^(k-2) * a(n-k). - Ilya Gutkovskiy, Feb 07 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 180*x^5 + 1678*x^6 + 20388*x^7 + 305331*x^8 + 5423511*x^9 + 111282445*x^10 + 2587931469*x^11 + 67239205808*x^12 +...
such that A(x) = 1 / (1 - Sum_{k>=1} k^(k-2) * x^k ).
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 83*x^4/4 + 746*x^5/5 + 8817*x^6/6 + 129340*x^7/7 + 2261195*x^8/8 + 45815431*x^9/9 + 1054594428*x^10/10 + 27167908186*x^11/11 + 774186515309*x^12/12 + 24174818590638*x^13/13 + 820795732075686*x^14/14 + 30104104733233598*x^15/15 +...
which equals the sum
log(A(x)) = (x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1296*x^6 +...) +
(x^2 + 2*x^3 + 7*x^4 + 38*x^5 + 291*x^6 + 2938*x^7 +...)/2 +
(x^3 + 3*x^4 + 12*x^5 + 67*x^6 + 507*x^7 + 5001*x^8 +...)/3 +
(x^4 + 4*x^5 + 18*x^6 + 104*x^7 + 783*x^8 + 7572*x^9 +...)/4 +
(x^5 + 5*x^6 + 25*x^7 + 150*x^8 + 1130*x^9 + 10751*x^10 +...)/5 +
(x^6 + 6*x^7 + 33*x^8 + 206*x^9 + 1560*x^10 + 14652*x^11 +...)/6 +
(x^7 + 7*x^8 + 42*x^9 + 273*x^10 + 2086*x^11 + 19404*x^12 +...)/7 +
... +
(x + 2^0*x^2 + 3^1*x^3 + 4^2*x^4 + 5^3*x^5 +...+ k^(k-2)*x^k +...)^n/n +
...
MATHEMATICA
CoefficientList[Series[1/(1 - Sum[k^(k-2) * x^k, {k, 1, 20}]), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 06 2016 *)
PROG
(PARI) {a(n) = polcoeff( 1/(1 - sum(k=1, n+1, k^(k-2) * x^k +x*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A372346 A005270 A308444 * A080839 A118085 A058712
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 23 2016
STATUS
approved