login
A005270
Number of sequences s of length n with s[1]=1, s[2]=1, s[j-1]<s[j]<=s[j-2]+s[j-1] for j>=3.
(Formerly M1684)
4
1, 1, 1, 2, 6, 27, 177, 1680, 23009, 455368, 13067353, 546378617, 33472296082, 3021920660821, 404374532614122, 80646410554881100, 24095492607316134304, 10837141045948365696938, 7369252748590790186483284, 7606603491185739308318700818
OFFSET
2,4
COMMENTS
The sequences of length n that are counted here are sub-Fibonacci sequences (A005269) with the property that its members, except for the initial two terms, strictly increase. - Emeric Deutsch, Feb 15 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter C. Fishburn and Fred S. Roberts, Elementary sequences, sub-Fibonacci sequences, Discrete Appl. Math. 44 (1993), no. 1-3, 261-281.
FORMULA
a(n) equals the number of nodes in generation n-2 of the sub-Fibonacci tree (A125051) for n>=2. - Paul D. Hanna, Nov 19 2006
See the Maple program; g[k](x, y) is the number of sequences s[1], s[2], ..., s[k+2] such that s[1]=x, s[2]=y, s[j-1] <s[j] <= s[j-2]+s[j-1] for j>=3. - Emeric Deutsch, Feb 15 2007
EXAMPLE
G.f. = x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 27*x^7 + 177*x^8 + 1680^x^9 + ...
a(2)=6 because we have (1,1,2,3,4,5), (1,1,2,3,4,6), (1,1,2,3,4,7), (1,1,2,3,5,6), (1,1,2,3,5,7) and (1,1,2,3,5,8).
MAPLE
g[0]:=1:for k from 0 to 20 do g[k+1]:=expand(sum(subs({x=y, y=z}, g[k]), z=y+1..x+y)) od:seq(subs({x=1, y=1}, g[k]), k=0..20); # Emeric Deutsch, Feb 15 2007
PROG
(PARI) {a(n) = if(n<2, return(0)); my(c, e); forvec(s=vector(n, i, [1, fibonacci(i)]), e=0; for(k=3, n, if( s[k-1]>=s[k] || s[k]>s[k-2]+s[k-1], e=1; break)); if(e, next); c++, 1); c}; /* Michael Somos, Dec 02 2016 */
CROSSREFS
Cf. A005269.
Sequence in context: A370982 A130455 A372346 * A308444 A277611 A080839
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(12) from Paul D. Hanna, Nov 19 2006
Edited by Emeric Deutsch, Feb 15 2007
STATUS
approved