login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005269
a(n) = number of length-n sequences s with s[1]=1, s[2]=1, s[k-1] <=s[k] <= s[k-2]+s[k-1] (s is called a sub-Fibonacci sequence of length n).
(Formerly M1234)
9
1, 2, 4, 10, 31, 127, 711, 5621, 64049, 1067599, 26287664, 963023487, 52766766100, 4342736509018, 538755914902622, 101067429677072459, 28751803102222498512, 12436935036300286507123, 8200693250120852291693833, 8262592110164298068793701546
OFFSET
2,2
REFERENCES
Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter C. Fishburn and Fred S. Roberts, Uniqueness in finite measurement, in Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099). [Annotated scan of five pages only]
Peter C. Fishburn and Fred S. Roberts, Elementary sequences, sub-Fibonacci sequences, Discrete Appl. Math. 44 (1993), no. 1-3, 261-281.
FORMULA
See the Maple program; f[k](x, y) is the number of sequences s[1], s[2], ..., s[k+2] such that s[1]=x, s[2]=y, s[j-1] <=s[j] <= s[j-2]+s[j-1]. - Emeric Deutsch and Don Reble, Feb 07 2005
EXAMPLE
G.f. = x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 31*x^6 + 127*x^7 + 711*x^8 + 5621*x^9 + ...
a(4)=4 because we have (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,1,2,3).
MAPLE
f[0]:=1:for k from 0 to 19 do f[k+1]:=expand(sum(subs({x=y, y=z}, f[k]), z=y..x+y)) od: seq(subs({x=1, y=1}, f[k]), k=0..19);
PROG
(PARI) {a(n) = if(n<2, return(0)); my(c, e); forvec(s=vector(n, i, [1, fibonacci(i)]), e=0; for(k=3, n, if( s[k-1]>s[k] || s[k]>s[k-2]+s[k-1], e=1; break)); if(e, next); c++, 1); c}; /* Michael Somos, Dec 02 2016 */
CROSSREFS
Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.
Sequence in context: A138415 A005268 A243931 * A070900 A296003 A263662
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch and Don Reble, Feb 07 2005
STATUS
approved