login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363123
Primitive terms of A363122: terms k of A363122 such that k/2 is not a term of A363122.
2
2, 12, 40, 56, 120, 144, 168, 176, 208, 280, 528, 544, 608, 624, 720, 736, 800, 840, 864, 880, 928, 992, 1008, 1040, 1232, 1456, 1584, 1632, 1824, 1872, 2208, 2288, 2368, 2400, 2624, 2640, 2720, 2752, 2784, 2976, 3008, 3040, 3120, 3136, 3392, 3680, 3696, 3776
OFFSET
1,1
COMMENTS
If k is a term of this sequence then k*2^m is a term of A363122 for any m >= 0.
LINKS
MAPLE
filter:= proc(n) local F2, Fp, v2, vp, t;
F2, Fp:= selectremove(t -> t[1]=2, ifactors(n)[2]);
if Fp = [] then return (n=2) fi;
v2:= 2^F2[1, 2];
vp:= max(map(t -> t[1]^t[2], Fp));
v2 > vp and v2/2 <= vp;
end proc:
select(filter, [seq(i, i=2.10000, 2)]); # Robert Israel, May 18 2023
MATHEMATICA
q[n_] := Module[{e = IntegerExponent[n, 2]}, 2^e > Max[Power @@@ FactorInteger[n/2^e]]]; Select[Range[2, 10000, 2], q[#] && ! q[#/2] &]
PROG
(PARI) is1(n) = {my(e = valuation(n, 2), m = n>>e); if(m == 1, n>1, f = factor(m); 2^e > vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); } \\ A363122
is(n) = !(n%2) && is1(n) && !is1(n/2)
(Python)
from itertools import count, islice
from sympy import factorint
def A363123_gen(startvalue=2): # generator of terms
return filter(lambda n:(m:=n&-n)>max((p**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()), default=1)>=m>>1, count(max(startvalue, 2)))
A363123_list = list(islice(A363123_gen(), 20)) # Chai Wah Wu, May 17 2023
CROSSREFS
Cf. A363122.
Sequence in context: A190022 A086602 A019006 * A168057 A290131 A008911
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 16 2023
STATUS
approved