login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363121
Primitive terms of A116882: terms k of A116882 such that k/2 is not a term of A116882.
2
1, 12, 40, 56, 144, 176, 208, 240, 544, 608, 672, 736, 800, 864, 928, 992, 2112, 2240, 2368, 2496, 2624, 2752, 2880, 3008, 3136, 3264, 3392, 3520, 3648, 3776, 3904, 4032, 8320, 8576, 8832, 9088, 9344, 9600, 9856, 10112, 10368, 10624, 10880, 11136, 11392, 11648, 11904
OFFSET
1,2
COMMENTS
If k is a term of this sequence then k*2^m is a term of A116882 for any m >= 0.
LINKS
FORMULA
a(n) = (2*n-1)*2^A070941(n-1), for n > 1.
MATHEMATICA
q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Join[{1}, Select[Range[2, 12000, 2], q[#] && !q[#/2] &]]
(* or *)
a[1] = 1; a[n_] := (2*n - 1)*2^IntegerLength[2*n - 1, 2]; Array[a, 100]
PROG
(PARI) a(n) = if(n == 1, 1, (2*n - 1)*2^length(binary(2*n - 1)));
(Python)
def A363121(n): return (m:=2*n-1)<<m.bit_length() if n>1 else 1 # Chai Wah Wu, May 17 2023
CROSSREFS
Sequence in context: A292544 A345924 A114815 * A353839 A175583 A109766
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 16 2023
STATUS
approved