OFFSET
1,1
COMMENTS
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The initial terms and the corresponding compositions:
12: (1,3) 202: (1,3,2,2) 582: (3,4,1,2)
40: (2,4) 205: (1,3,1,2,1) 588: (3,3,1,3)
49: (1,4,1) 207: (1,3,1,1,1,1) 600: (3,2,1,4)
51: (1,3,1,1) 212: (1,2,2,3) 624: (3,1,1,5)
54: (1,2,1,2) 217: (1,2,1,3,1) 642: (2,6,2)
60: (1,1,1,3) 219: (1,2,1,2,1,1) 645: (2,5,2,1)
144: (3,5) 222: (1,2,1,1,1,2) 647: (2,5,1,1,1)
161: (2,5,1) 232: (1,1,2,4) 650: (2,4,2,2)
163: (2,4,1,1) 241: (1,1,1,4,1) 653: (2,4,1,2,1)
166: (2,3,1,2) 243: (1,1,1,3,1,1) 655: (2,4,1,1,1,1)
172: (2,2,1,3) 246: (1,1,1,2,1,2) 660: (2,3,2,3)
184: (2,1,1,4) 252: (1,1,1,1,1,3) 665: (2,3,1,3,1)
194: (1,5,2) 544: (4,6) 667: (2,3,1,2,1,1)
197: (1,4,2,1) 577: (3,6,1) 670: (2,3,1,1,1,2)
199: (1,4,1,1,1) 579: (3,5,1,1) 680: (2,2,2,4)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Select[Range[0, 100], ats[stc[#]]==-2&]
CROSSREFS
These compositions are counted by A002054.
These are the positions of -2's in A124754.
The version for reverse-alternating sum is A345923.
The opposite (positive 2) version is A345925.
The version for Heinz numbers of partitions is A345962.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2021
STATUS
approved