OFFSET
1,1
COMMENTS
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The sequence of terms together with the corresponding compositions begins:
5: (2,1)
18: (3,2)
23: (2,1,1,1)
25: (1,3,1)
29: (1,1,2,1)
68: (4,3)
75: (3,2,1,1)
78: (3,1,1,2)
81: (2,4,1)
85: (2,2,2,1)
90: (2,1,2,2)
95: (2,1,1,1,1,1)
98: (1,4,2)
103: (1,3,1,1,1)
105: (1,2,3,1)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}];
Select[Range[0, 100], sats[stc[#]]==-1&]
CROSSREFS
These compositions are counted by A001791.
These are the positions of -1's in A344618.
The non-reverse version is A345910.
The opposite (positive 1) version is A345911.
The version for Heinz numbers of partitions is A345959.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 01 2021
STATUS
approved