OFFSET
0,4
COMMENTS
Original name: Wiggly sums: number of sums adding to n in which terms alternately increase and decrease or vice versa.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..3333
Edward A. Bender and E. Rodney Canfield, Locally Restricted Compositions III. Adjacent-Part Periodic Inequalities, Electronic Journal of Combinatorics 17 (2010), #R145.
FORMULA
a(n) = A025048(n) + A025049(n) - 1 = sum_k[A059881(n, k)] = sum_k[S(n, k) + T(n, k)] - 1 where if n>k>0 S(n, k) = sum_j[T(n - k, j)] over j>k and T(n, k) = sum_j[S(n - k, j)] over k>j (note reversal) and if n>0 S(n, n) = T(n, n) = 1; S(n, k) = A059882(n, k), T(n, k) = A059883(n, k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725..., c = 0.82222360450823867604750473815253345888526601460811483897... . - Vaclav Kotesovec, Sep 12 2014
a(n) = A344604(n) + 1 - n mod 2. - Gus Wiseman, Jun 17 2021
EXAMPLE
From Joerg Arndt, Dec 28 2012: (Start)
There are a(7)=19 such compositions of 7:
[ 1] + [ 1 2 1 2 1 ]
[ 2] + [ 1 2 1 3 ]
[ 3] + [ 1 3 1 2 ]
[ 4] + [ 1 4 2 ]
[ 5] + [ 1 5 1 ]
[ 6] + [ 1 6 ]
[ 7] - [ 2 1 3 1 ]
[ 8] - [ 2 1 4 ]
[ 9] + [ 2 3 2 ]
[10] + [ 2 4 1 ]
[11] + [ 2 5 ]
[12] - [ 3 1 2 1 ]
[13] - [ 3 1 3 ]
[14] + [ 3 4 ]
[15] - [ 4 1 2 ]
[16] - [ 4 3 ]
[17] - [ 5 2 ]
[18] - [ 6 1 ]
[19] 0 [ 7 ]
For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
(End)
MAPLE
b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
end:
a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 31 2024
MATHEMATICA
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], wigQ]], {n, 0, 15}] (* Gus Wiseman, Jun 17 2021 *)
PROG
(PARI)
D(n, f)={my(M=matrix(n, n, j, k, k>=j), s=M[, n]); for(b=1, n, f=!f; M=matrix(n, n, j, k, if(k<j, if(f, if(k>1, M[j-k, k-1]), M[j-k, n]-M[j-k, k] ))); for(k=2, n, M[, k]+=M[, k-1]); s+=M[, n]); s~}
seq(n) = concat([1], D(n, 0) + D(n, 1) - vector(n, j, 1)) \\ Andrew Howroyd, Jan 31 2024
CROSSREFS
The ascending case is A025048.
The descending case is A025049.
The version allowing pairs (x,x) is A344604.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A345164 counts alternating permutations of prime indices.
KEYWORD
nonn
AUTHOR
EXTENSIONS
Better name using a comment of Franklin T. Adams-Watters by Peter Luschny, Oct 31 2021
STATUS
approved