The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274174 Number of compositions of n if all summand runs are kept together. 22
 1, 1, 2, 4, 7, 12, 22, 36, 60, 97, 162, 254, 406, 628, 974, 1514, 2305, 3492, 5254, 7842, 11598, 17292, 25294, 37090, 53866, 78113, 112224, 161092, 230788, 328352, 466040, 658846, 928132, 1302290, 1821770, 2537156, 3536445, 4897310, 6777806, 9341456, 12858960, 17625970, 24133832, 32910898, 44813228, 60922160, 82569722 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n^2) is odd. - Gregory L. Simay, Jun 23 2019 Also the number of compositions of n avoiding the patterns (1,2,1) and (2,1,2). - Gus Wiseman, Jul 07 2020 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..5000 FORMULA a(n) = Sum_{k>=0} k! * A116608(n,k). - Joerg Arndt, Jun 12 2016 EXAMPLE If the summand runs are blocked together, there are 22 compositions of a(6): 6; 5+1, 1+5, 4+2, 2+4, (3+3), 4+(1+1), (1+1)+4, 1+2+3, 1+3+2, 2+1+3, 2+3+1, 3+1+2, 3+2+1, (2+2+2), 3+(1+1+1), (1+1+1)+3, (2+2)+(1+1), (1+1)+(2+2), 2+(1+1+1+1), (1+1+1+1)+2, (1+1+1+1+1+1). a(0)=1; a(1)= 1; a(4) = 7; a(9) = 97; a(16) = 2305; a(25) = 78113 and a(36) = 3536445. - Gregory L. Simay, Jun 23 19 MAPLE b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,        add(b(n-i*j, i-1, p+`if`(j=0, 0, 1)), j=0..n/i)))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..50);  # Alois P. Heinz, Jun 12 2016 MATHEMATICA Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[Split[#]]==Length[Union[#]]&]], {n, 0, 10}] (* Gus Wiseman, Jul 07 2020 *) b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0,     Sum[b[n - i*j, i - 1, p + If[j == 0, 0, 1]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 11 2021, after Alois P. Heinz *) CROSSREFS Cf. A000070, A116608. The version for patterns is A001339. The version for prime indices is A333175. The complement (i.e., the matching version) is A335548. Anti-run compositions are A003242. (1,2,1)- and (2,1,2)-matching permutations of prime indices are A335462. (1,2,1)-matching compositions are A335470. (1,2,1)-avoiding compositions are A335471. (2,1,2)-matching compositions are A335472. (2,1,2)-avoiding compositions are A335473. Cf. A000670, A056986, A181796, A335451, A335452, A335460, A335463. Sequence in context: A054151 A018176 A135460 * A089259 A309733 A289107 Adjacent sequences:  A274171 A274172 A274173 * A274175 A274176 A274177 KEYWORD nonn AUTHOR Gregory L. Simay, Jun 12 2016 EXTENSIONS Terms a(9) and beyond from Joerg Arndt, Jun 12 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 09:09 EDT 2022. Contains 354112 sequences. (Running on oeis4.)