login
A056986
Number of permutations on {1,...,n} containing any given pattern alpha in the symmetric group S_3.
202
0, 0, 1, 10, 78, 588, 4611, 38890, 358018, 3612004, 39858014, 478793588, 6226277900, 87175616760, 1307664673155, 20922754530330, 355687298451210, 6402373228089300, 121645098641568810, 2432902001612519580, 51090942147243172980, 1124000727686125116360
OFFSET
1,4
COMMENTS
This is well-defined because for all patterns alpha in S_3 the number of permutations in S_n avoiding alpha is the same (the Catalan numbers). - Emeric Deutsch, May 05 2008
FORMULA
From Alois P. Heinz, Jul 05 2012: (Start)
a(n) = A214152(n, 3).
a(n) = A000142(n) - A000108(n).
a(n) = A000142(n) - A214015(n, 2). (End)
E.g.f.: 1/(1 - x) - exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - Ilya Gutkovskiy, Jan 21 2017
EXAMPLE
a(4) = 10 because, taking, for example, the pattern alpha=321, we have 3214, 3241, 1432, 2431, 3421, 4213, 4132, 4231, 4312 and 4321.
MAPLE
a:= n-> n! -binomial(2*n, n)/(n+1):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 05 2012
MATHEMATICA
Table[n! -CatalanNumber[n], {n, 30}]
PROG
(PARI) a(n)=n!-binomial(n+n, n+1)/n \\ Charles R Greathouse IV, Jun 10 2011
(Magma)
A056986:= func< n | Factorial(n) - Catalan(n) >;
[A056986(n): n in [1..30]]; // G. C. Greubel, Oct 06 2024
(SageMath)
def A056986(n): return factorial(n) - catalan_number(n)
[A056986(n) for n in range(1, 31)] # G. C. Greubel, Oct 06 2024
CROSSREFS
KEYWORD
nonn,easy,changed
STATUS
approved