login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214152
Number of permutations T(n,k) in S_n containing an increasing subsequence of length k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
15
1, 2, 1, 6, 5, 1, 24, 23, 10, 1, 120, 119, 78, 17, 1, 720, 719, 588, 207, 26, 1, 5040, 5039, 4611, 2279, 458, 37, 1, 40320, 40319, 38890, 24553, 6996, 891, 50, 1, 362880, 362879, 358018, 268521, 101072, 18043, 1578, 65, 1, 3628800, 3628799, 3612004, 3042210, 1438112, 337210, 40884, 2603, 82, 1
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Permutation Pattern
Wikipedia, Young tableau
FORMULA
T(n,k) = Sum_{i=k..n} A047874(n,i).
T(n,k) = A000142(n) - A214015(n,k-1).
EXAMPLE
T(3,2) = 5. All 3! = 6 permutations of {1,2,3} contain an increasing subsequence of length 2 with the exception of 321.
Triangle T(n,k) begins:
: 1;
: 2, 1;
: 6, 5, 1;
: 24, 23, 10, 1;
: 120, 119, 78, 17, 1;
: 720, 719, 588, 207, 26, 1;
: 5040, 5039, 4611, 2279, 458, 37, 1;
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= (n, k)-> n! -g(n, k-1, []):
seq(seq(T(n, k), k=1..n), n=1..12);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; t[n_, k_] := n! - g[n, k-1, {}]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
CROSSREFS
Columns k=1-10 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677.
Row sums give: A003316.
T(2n,n) gives A269021.
Diagonal and lower diagonals give: A000012, A002522, A217200, A217193.
Sequence in context: A159924 A133367 A179456 * A121575 A121576 A049444
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 05 2012
STATUS
approved