The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214152 Number of permutations T(n,k) in S_n containing an increasing subsequence of length k; triangle T(n,k), n>=1, 1<=k<=n, read by rows. 15
 1, 2, 1, 6, 5, 1, 24, 23, 10, 1, 120, 119, 78, 17, 1, 720, 719, 588, 207, 26, 1, 5040, 5039, 4611, 2279, 458, 37, 1, 40320, 40319, 38890, 24553, 6996, 891, 50, 1, 362880, 362879, 358018, 268521, 101072, 18043, 1578, 65, 1, 3628800, 3628799, 3612004, 3042210, 1438112, 337210, 40884, 2603, 82, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Rows n = 1..55, flattened Eric Weisstein's World of Mathematics, Permutation Pattern Wikipedia, Longest increasing subsequence problem Wikipedia, Young tableau FORMULA T(n,k) = Sum_{i=k..n} A047874(n,i). T(n,k) = A000142(n) - A214015(n,k-1). EXAMPLE T(3,2) = 5. All 3! = 6 permutations of {1,2,3} contain an increasing subsequence of length 2 with the exception of 321. Triangle T(n,k) begins: : 1; : 2, 1; : 6, 5, 1; : 24, 23, 10, 1; : 120, 119, 78, 17, 1; : 720, 719, 588, 207, 26, 1; : 5040, 5039, 4611, 2279, 458, 37, 1; MAPLE h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1\$n])^2, `if`(i<1, 0, add(g(n-i*j, i-1, [l[], i\$j]), j=0..n/i))): T:= (n, k)-> n! -g(n, k-1, []): seq(seq(T(n, k), k=1..n), n=1..12); MATHEMATICA h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; t[n_, k_] := n! - g[n, k-1, {}]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *) CROSSREFS Columns k=1-10 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677. Row sums give: A003316. T(2n,n) gives A269021. Diagonal and lower diagonals give: A000012, A002522, A217200, A217193. Cf. A047874, A214015. Sequence in context: A159924 A133367 A179456 * A121575 A121576 A049444 Adjacent sequences: A214149 A214150 A214151 * A214153 A214154 A214155 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jul 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 15:42 EDT 2024. Contains 372799 sequences. (Running on oeis4.)