login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217193
Number of permutations in S_{n+3} containing an increasing subsequence of length n.
3
6, 24, 119, 588, 2279, 6996, 18043, 40884, 83923, 159404, 284431, 482108, 782799, 1225508, 1859379, 2745316, 3957723, 5586364, 7738343, 10540204, 14140151, 18710388, 24449579, 31585428, 40377379, 51119436, 64143103, 79820444, 98567263, 120846404, 147171171
OFFSET
0,1
LINKS
FORMULA
a(0) = 6, a(1) = 24, a(n) = (n^6+6*n^5+10*n^4+4*n^3+19*n^2+62*n+66)/6 for n>1.
G.f.: (4*x^8-23*x^7+53*x^6-60*x^5+32*x^4+49*x^3+77*x^2-18*x+6)/(1-x)^7.
EXAMPLE
a(2) = 119: only one of 5! = 120 permutations of {1,2,3,4,5} has no increasing subsequence of length 2: 54321.
MAPLE
a:= n-> 11+(62+(19+(4+(10+(6+n)*n)*n)*n)*n)*n/6-`if`(n<2, 5-n, 0):
seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[(4x^8-23x^7+53x^6-60x^5+32x^4+49x^3+77x^2-18x+6)/ (1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6, 24, 119, 588, 2279, 6996, 18043, 40884, 83923}, 50] (* Harvey P. Dale, Jul 28 2021 *)
CROSSREFS
A diagonal of A214152.
Sequence in context: A293257 A223752 A293236 * A109583 A377502 A352807
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 27 2012
STATUS
approved