login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217675
Number of permutations in S_n containing an increasing subsequence of length 8.
3
1, 65, 2603, 83923, 2410291, 64864819, 1683724308, 42918747000, 1086997811325, 27571922195325, 704311698875426, 18189847735254134, 476311846323448840, 12672229166094171240, 343069245941729668380, 9461927811882316662636, 266091066751920438364275
OFFSET
8,2
LINKS
FORMULA
a(n) = A214152(n,8) = A000142(n)-A072131(n) = A000142(n)-A214015(n,7).
EXAMPLE
a(8) = 1: 12345678.
MAPLE
b:= proc(n) option remember; `if`(n<8, n!, ((-343035+429858*n
+238440*n^3+38958*n^4+634756*n^2+2940*n^5+84*n^6)*b(n-1)
-(1974*n^4+36336*n^3+213240*n^2+407840*n+82425)*(n-1)^2*b(n-2)
+2*(49875+42646*n+6458*n^2)*(n-1)^2*(n-2)^2*b(n-3)
-11025*(n-1)^2*(n-2)^2*(n-3)^2*b(n-4))/ ((n+6)^2*(n+10)^2*(n+12)^2))
end:
a:= n-> n! -b(n):
seq(a(n), n=8..25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2012
STATUS
approved