login
A217674
Primes p = a^2 + b^2 such that (x - a)^2 + (y - b)^2 = 2 and q - p = 4, where q = x^2 + y^2 is prime, assuming that a > b > 0 and x > y > 0.
1
13, 313, 613, 3613, 4513, 21013, 52813, 86113, 99013, 148513, 165313, 241513, 255613, 332113, 787513, 800113, 904513, 1073113, 1720513, 2279113, 2679613, 2940313, 3471613, 4307113, 4605613, 4789513, 5168113, 6072613, 6498013, 6716113, 7469113, 8925313
OFFSET
1,1
COMMENTS
The primes p and q have the smallest difference and the shortest distance on the 2-dimensional plane. Primes p = a^2 + (a-1)^2 == 13 (mod 100) and q = (a+1)^2 + (a-2)^2 == 17 (mod 100), where natural a == 3 (mod 5).
LINKS
FORMULA
A002313(n) such that A217503(n) = 2 and A082073(n-1) = 4.
Intersection of A001844 and A023200.
a(n) = A001844(m) for some m == 2 or 12 (mod 15).
a(n) == 13 (mod 300).
MATHEMATICA
isP[p_, p1_List, p2_List] := Module[{q = Sort[Abs[p1 + p2]], s}, s = q[[1]]^2 + q[[2]]^2; q != p1 && s - p == 4 && PrimeQ[s]]; testQ[p_] := Module[{pp = PowersRepresentations[p, 2, 2][[1]]}, isP[p, pp, {-1, -1}] || isP[p, pp, {-1, 1}] || isP[p, pp, {1, -1}] || isP[p, pp, {1, 1}]]; Select[Prime[Range[200000]], Mod[#, 4] == 1 && testQ[#] &] (* T. D. Noe, Oct 19 2012 *)
CROSSREFS
Cf. A217503.
Sequence in context: A234236 A183522 A119131 * A360324 A241022 A331647
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Oct 10 2012
EXTENSIONS
Extended by T. D. Noe, Oct 19 2012
STATUS
approved