login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217674
Primes p = a^2 + b^2 such that (x - a)^2 + (y - b)^2 = 2 and q - p = 4, where q = x^2 + y^2 is prime, assuming that a > b > 0 and x > y > 0.
1
13, 313, 613, 3613, 4513, 21013, 52813, 86113, 99013, 148513, 165313, 241513, 255613, 332113, 787513, 800113, 904513, 1073113, 1720513, 2279113, 2679613, 2940313, 3471613, 4307113, 4605613, 4789513, 5168113, 6072613, 6498013, 6716113, 7469113, 8925313
OFFSET
1,1
COMMENTS
The primes p and q have the smallest difference and the shortest distance on the 2-dimensional plane. Primes p = a^2 + (a-1)^2 == 13 (mod 100) and q = (a+1)^2 + (a-2)^2 == 17 (mod 100), where natural a == 3 (mod 5).
LINKS
FORMULA
A002313(n) such that A217503(n) = 2 and A082073(n-1) = 4.
Intersection of A001844 and A023200.
a(n) = A001844(m) for some m == 2 or 12 (mod 15).
a(n) == 13 (mod 300).
MATHEMATICA
isP[p_, p1_List, p2_List] := Module[{q = Sort[Abs[p1 + p2]], s}, s = q[[1]]^2 + q[[2]]^2; q != p1 && s - p == 4 && PrimeQ[s]]; testQ[p_] := Module[{pp = PowersRepresentations[p, 2, 2][[1]]}, isP[p, pp, {-1, -1}] || isP[p, pp, {-1, 1}] || isP[p, pp, {1, -1}] || isP[p, pp, {1, 1}]]; Select[Prime[Range[200000]], Mod[#, 4] == 1 && testQ[#] &] (* T. D. Noe, Oct 19 2012 *)
CROSSREFS
Cf. A217503.
Sequence in context: A234236 A183522 A119131 * A360324 A241022 A331647
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Oct 10 2012
EXTENSIONS
Extended by T. D. Noe, Oct 19 2012
STATUS
approved