|
|
A082073
|
|
First difference set of primes with 4k+1 form: A002144.
|
|
10
|
|
|
8, 4, 12, 8, 4, 12, 8, 12, 16, 8, 4, 8, 4, 24, 12, 8, 16, 8, 12, 4, 32, 4, 8, 16, 12, 8, 4, 12, 20, 4, 20, 12, 4, 20, 16, 8, 4, 8, 12, 12, 16, 8, 4, 48, 12, 20, 16, 12, 8, 16, 8, 12, 4, 24, 12, 8, 12, 4, 24, 8, 24, 24, 4, 8, 4, 24, 12, 12, 8, 24, 4, 20, 4, 48, 8, 4, 12, 24, 20, 12, 4, 8, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is divisible by 4, for all n.
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A002144(n+1) - A002144(n).
|
|
EXAMPLE
|
first and second 4k+1 primes are 5 and 13, so a(1)=13-5=8;
|
|
MATHEMATICA
|
k=0; m=4; r=1; Do[s=Mod[Prime[n], m]; If[Equal[s, r], rp=ep; k=k+1; ep=Prime[n]; Print[(ep-rp)]; ], {n, 1, 1000}]
Differences[Select[Prime[Range[200]], Mod[#, 4]==1&]] (* Harvey P. Dale, Feb 05 2020 *)
|
|
PROG
|
(PARI) p=5; forprime(q=7, 1e3, if(q%4==1, print1(q-p", "); p=q)) \\ Charles R Greathouse IV, May 13 2012
|
|
CROSSREFS
|
Cf. A002144, A002145, A082074, A082075, A082076.
Sequence in context: A194184 A194217 A239971 * A244209 A156279 A203072
Adjacent sequences: A082070 A082071 A082072 * A082074 A082075 A082076
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Labos Elemer, Apr 07 2003
|
|
STATUS
|
approved
|
|
|
|