login
A244209
The total number of unit circles (centered at sites of a square lattice with constant 2) intersecting a circle of radius n centered at (0,0).
2
0, 8, 4, 12, 12, 16, 16, 32, 20, 28, 28, 40, 32, 40, 44, 48, 52, 68, 52, 56, 56, 72, 60, 68, 76, 88, 80, 88, 84, 84, 84, 112, 92, 112, 104, 112, 116, 116, 116, 112, 112, 144, 140, 140, 132, 144, 136, 144, 148, 168, 148, 164, 164, 160, 160, 184, 164, 172, 180, 200, 176, 192, 204
OFFSET
1,2
COMMENTS
The intersecting and enclosing case found so far only at n = 2. For the cases of enclosing with and without intersecting the sequence would be A168397(n+1) and A168397(n+2) respectively. The first difference seems to be randomly distributed.
LINKS
Eric Weisstein's World of Mathematics, Circle-Circle Intersection
PROG
(Small Basic)
For n=1 to 200
count=0
row=math.Ceiling((n+1)/2)-1
for i=0 To row
for j=0 To row
x=math.power(4*i*i+4*j*j, 1/2)
c1=-x+1-n
c2=-x-1+n
c3=-x+1+n
c4=x+1+n
If x>0 and c1*c2*c3*c4>0 then
c=(1/x)*math.Power(c1*c2*c3*c4, 1/2)
Else
c=0
EndIf
If c>0 Then
count=count+1
EndIf
EndFor
EndFor
If Math.Remainder(n, 2)=0 Then
circle=4*(count-2)+4
Else
circle=4*count
EndIf
TextWindow.Writeline(circle)
EndFor
CROSSREFS
Cf. A168397.
Sequence in context: A194217 A239971 A082073 * A156279 A203072 A131873
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Jun 22 2014
EXTENSIONS
Name specified. - Wolfdieter Lang, Jul 07 2014
STATUS
approved