login
A082070
Smallest prime that divides phi(n) and sigma(n) = A000203(n), or 1 if phi(n) and sigma(n) are relatively prime.
7
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2
OFFSET
1,3
LINKS
FORMULA
a(n) = A020639(A009223(n)). - Antti Karttunen, Nov 03 2017
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := EulerPhi[x]; f2[x_] := DivisorSigma[1, x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
(* Second program: *)
Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {EulerPhi@ #, DivisorSigma[1, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
PROG
(PARI)
A020639(n) = if(1==n, n, vecmin(factor(n)[, 1]));
A082070(n) = A020639(gcd(eulerphi(n), sigma(n))); \\ Antti Karttunen, Nov 03 2017
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 07 2003
EXTENSIONS
Name edited by Antti Karttunen after an example by N. J. A. Sloane, Nov 04 2017
STATUS
approved