login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082076
First differences of primes of the form 4*k+3 (A002145), divided by 4.
6
1, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 1, 5, 1, 5, 1, 2, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 3, 2, 3, 6, 1, 5, 4, 3, 2, 3, 1, 9, 3, 2, 1, 5, 1, 3, 2, 1, 2, 1, 5, 6, 4, 2, 4, 3, 2, 3, 3, 3, 1, 3, 6, 2, 7, 2, 3, 1, 2, 9, 6, 3, 1, 3, 5, 1, 5, 1, 5, 1, 2, 7, 5, 1, 3, 2, 7, 3, 2, 3, 3, 6, 1, 3, 5, 7, 3, 2, 4, 9, 2, 7, 5, 1, 2
OFFSET
1,3
LINKS
FORMULA
a(n) = (A002145(n+1) - A002145(n))/4.
EXAMPLE
The first and second primes of the form 4*k+3 are 3 and 7, so a(1) = (7-3)/4 = 1.
MATHEMATICA
k=0; m=4; r=3; Do[s=Mod[Prime[n], m]; If[Equal[s, r], rp=ep; k=k+1; ep=Prime[n]; Print[(ep-rp)/4]; ], {n, 1, 1000}]
Differences[Select[Prime[Range[400]], IntegerQ[(#-3)/4]&]]/4 (* Harvey P. Dale, Apr 29 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 07 2003
STATUS
approved