|
|
A082079
|
|
Balanced primes of order four.
|
|
18
|
|
|
491, 757, 1787, 3571, 6337, 6451, 6991, 7741, 7907, 8821, 10141, 10267, 10657, 12911, 15299, 16189, 18223, 18701, 19801, 19843, 19853, 19937, 21961, 22543, 22739, 22807, 23893, 23909, 24767, 25169, 25391, 26591, 26641, 26693, 26713
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The arithmetic mean of 8 primes in its "neighborhood"; not to be confused with 'Quadruply balanced primes' (A096710).
A balanced prime of order four is not necessarily balanced (A006562) order one, or of order two (A082077), or of order three (A082078), etc.
|
|
LINKS
|
Aaron Toponce, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
p = 491 = {463 + 467 + 479 + 487 + 491 + 499 + 503 + 509 + 521)/9 = 4419/9.
|
|
MAPLE
|
P:=proc(q) local n; for n from 3 to q do
if (ithprime(n-4)+ithprime(n-3)+ithprime(n-2)+ithprime(n-1)+ithprime(n+1)+ ithprime(n+2)+ithprime(n+3)+ ithprime(n+4))/8 = ithprime(n) then print(ithprime(n)); fi; od; end: P(10^6); # Paolo P. Lava, Mar 17 2014
|
|
MATHEMATICA
|
Do[s3=Prime[n]+Prime[n+1]+Prime[n+2]; s5=Prime[n-1]+s3+Prime[n+3]; s7=Prime[n-2]+s5+Prime[n+4]; s9=Prime[n-3]+s7+Prime[n+5]; If[Equal[s9/9, Prime[n+1]], Print[Prime[n+1]]], {n, 4, 10000}]
(* Second program: *)
With[{k = 4}, Select[MapIndexed[{Prime[First@ #2 + k], #1} &, Mean /@ Partition[Prime@ Range[3000], 2 k + 1, 1]], SameQ @@ # &][[All, 1]]] (* Michael De Vlieger, Feb 15 2018 *)
|
|
PROG
|
(GAP) P:=Filtered([1..50000], IsPrime);;
a:=List(Filtered(List([0..3000], k->List([5..13], j->P[j-4+k])), i-> Sum(i)/9=i[5]), m->m[5]); # Muniru A Asiru, Feb 14 2018
(PARI) isok(p) = {if (isprime(p), k = primepi(p); if (k > 4, sum(i=k-4, k+4, prime(i)) == 9*p; ); ); } \\ Michel Marcus, Mar 07 2018
|
|
CROSSREFS
|
Cf. A006562, A082077, A082078, A096697, A096698, A096699, A096700, A096701, A096702, A096703, A096704.
Cf. A096693, A082080, A081415, A051795, A006562.
Sequence in context: A060975 A180457 A271664 * A260925 A217118 A205200
Adjacent sequences: A082076 A082077 A082078 * A082080 A082081 A082082
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Apr 08 2003
|
|
STATUS
|
approved
|
|
|
|