|
|
A096700
|
|
Balanced primes of order eight.
|
|
16
|
|
|
37, 151, 173, 487, 1153, 2621, 4357, 4451, 5189, 5209, 5431, 6131, 7499, 8429, 8641, 9323, 10093, 10321, 10883, 10949, 11117, 11213, 11369, 11821, 12583, 16001, 16741, 18169, 18289, 22067, 23761, 25747, 29989, 33589, 36691, 39671, 39749, 39779
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Muniru A Asiru, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
37 is a member because 37 = (7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71)/17.
|
|
MAPLE
|
P:=proc(q) local n; for n from 9 to q do
if add(ithprime(n-k), k=-8..8)=17*ithprime(n) then print(ithprime(n));
fi; od; end: P(10^6); # Paolo P. Lava, Mar 17 2014
|
|
MATHEMATICA
|
Transpose[ Select[ Partition[ Prime[ Range[5000]], 15, 1], #[[8]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[9]] + #[[10]] + #[[11]] + #[[12]] + #[[13]] + #[[14]] + #[[15]])/14 &]][[8]]
|
|
PROG
|
(GAP) P:=Filtered([1..50000], IsPrime);;
a:=List(Filtered(List([0..5000], k->List([1..17], j->P[j+k])), i->Sum(i)/17=i[9]), m->m[9]); # Muniru A Asiru, Mar 03 2018
|
|
CROSSREFS
|
Cf. A096693, A006562, A082077, A082078, A082079, A096697, A096698, A096699, A096701, A096702, A096703, A096704.
Sequence in context: A141968 A142656 A145898 * A158596 A142688 A178835
Adjacent sequences: A096697 A096698 A096699 * A096701 A096702 A096703
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jun 26 2004
|
|
STATUS
|
approved
|
|
|
|