login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158596 a(n) = 38*n^2 - 1. 2
37, 151, 341, 607, 949, 1367, 1861, 2431, 3077, 3799, 4597, 5471, 6421, 7447, 8549, 9727, 10981, 12311, 13717, 15199, 16757, 18391, 20101, 21887, 23749, 25687, 27701, 29791, 31957, 34199, 36517, 38911, 41381, 43927, 46549, 49247, 52021, 54871 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (38*n^2 - 1)^2 - (361*n^2 - 19)*(2*n)^2 = 1 can be written as a(n)^2 - A158595(n)*A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(-37 - 40*x + x^2)/(x-1)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {37, 151, 341}, 50] (* Vincenzo Librandi, Feb 16 2012 *)

PROG

(Magma) I:=[37, 151, 341]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012

(PARI) for(n=1, 40, print1(38*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 16 2012

CROSSREFS

Cf. A005843, A158595.

Sequence in context: A142656 A145898 A096700 * A142688 A178835 A250942

Adjacent sequences: A158593 A158594 A158595 * A158597 A158598 A158599

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 22 2009

EXTENSIONS

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)