login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158594
Numbers which yield a prime whenever a 3 is prefixed, appended or inserted.
11
1, 7, 11, 17, 31, 37, 73, 121, 271, 331, 343, 359, 361, 373, 533, 637, 673, 733, 793, 889, 943, 1033, 1183, 2297, 3013, 3119, 3223, 3353, 3403, 3461, 3757, 3827, 3893, 3923, 4313, 4543, 4963, 5323, 5381, 5419, 6073, 6353, 8653, 9103, 9887, 10423, 14257
OFFSET
1,2
COMMENTS
1) It is conjectured that sequences of this type are infinite; also that an infinite number of primes is included.
2) Necessarily a(n) has end digit 1,3,7 or 9.
3) Sum of digits of a(n) has form 3k-1 or 3k+1.
4) Sequence is part of A068674 a(n) n=1,...,30: first 14 primes: 7, 11, 17, 31, 37, 73, 271, 331, 359, 373, 673, 733, 2297, 3461.
5) Note the "world record" 2297: smallest prime which yields five other primes 32297, 23297, 22397, 22937, 22973.
REFERENCES
Marcus Du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, HarperCollins. 2004
Bryan Bunch, Kingdom of Infinite Number: A Field Guide, W.H. Freeman & Company, 2001
LINKS
EXAMPLE
109 is not a term: 3109, 1039, 1093 are primes, but 1309 = 7 * 11 * 17.
121 is a term: 3121 (3 prefixed), 1213 (3 appended), 1321 and 1231 (3 inserted) are primes.
MAPLE
Lton := proc(L) local i ; add(op(i, L)*10^(i-1), i=1..nops(L) ) ; end: isA158594 := proc(n) local dgs, i, p; dgs := convert(n, base, 10) ; p := [3, op(dgs)] ; if not isprime(Lton(p)) then RETURN(false) ; fi; p := [op(dgs), 3] ; if not isprime(Lton(p)) then RETURN(false) ; fi; for i from 1 to nops(dgs)-1 do p := [op(1..i, dgs), 3, op(i+1..nops(dgs), dgs)] ; if not isprime(Lton(p)) then RETURN(false) ; fi; od: RETURN(true) ; end: for n from 1 to 25000 do if isA158594(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Mar 26 2009
PROG
(PARI) isok(n)={i=#digits(n); m=1; k=0; while(k<i+1&&m==1, r=n\10^k; s=n-r*10^k; t=r*10^(k+1)+s+3*10^k; if(isprime(t)==0, m=0); k++); m; } \\ Jinyuan Wang, Feb 02 2019
CROSSREFS
Cf. A068674, Numbers which yield primes when a 3 is prefixed or appended.
Cf. A068679, Numbers which yield a prime whenever a 1 is inserted anywhere in them (including at the beginning or end).
Cf. A158232, Numbers which yield primes when "13" is prefixed or appended.
Sequence in context: A019418 A068674 A156112 * A215419 A107642 A079651
KEYWORD
nonn,base
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 22 2009
EXTENSIONS
Corrected and extended by Chris K. Caldwell and R. J. Mathar, Mar 26 2009
STATUS
approved