The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158598 a(n) = 40*n^2 - 1. 2
39, 159, 359, 639, 999, 1439, 1959, 2559, 3239, 3999, 4839, 5759, 6759, 7839, 8999, 10239, 11559, 12959, 14439, 15999, 17639, 19359, 21159, 23039, 24999, 27039, 29159, 31359, 33639, 35999, 38439, 40959, 43559, 46239, 48999, 51839, 54759, 57759, 60839, 63999, 67239 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The identity (40*n^2 - 1)^2 - (400*n^2 - 20)*(2*n)^2 = 1 can be written as a(n)^2 - A158597(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: x*(-39 - 42*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) - 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {39, 159, 359}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
40*Range[40]^2-1 (* Harvey P. Dale, Jan 31 2022 *)
PROG
(Magma) I:=[39, 159, 359]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
(PARI) for(n=1, 40, print1(40*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 16 2012
CROSSREFS
Sequence in context: A128826 A240902 A158593 * A105838 A251335 A251328
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 22 2009
EXTENSIONS
Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 01:37 EDT 2024. Contains 372703 sequences. (Running on oeis4.)