login
A096698
Balanced primes of order six.
17
71, 211, 397, 409, 1487, 1559, 2281, 4397, 4937, 5347, 5857, 7577, 10399, 11369, 12583, 14843, 19391, 21739, 21787, 22067, 22469, 23789, 25639, 27329, 29537, 29867, 30197, 30911, 33347, 33931, 34267, 35099, 36131, 36691, 37549, 38671
OFFSET
1,1
LINKS
EXAMPLE
71 is a member because 71 = (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101)/13.
MATHEMATICA
Transpose[ Select[ Partition[ Prime[ Range[5000]], 13, 1], #[[7]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[8]] + #[[9]] + #[[10]] + #[[11]] + #[[12]] + #[[13]])/12 &]][[7]]
Transpose[Select[Partition[Prime[Range[5000]], 13, 1], Total[#]/13==#[[7]]&]][[7]] (* Harvey P. Dale, Feb 25 2011 *)
PROG
(GAP) P:=Filtered([1..90000], IsPrime);;
b:=6;;
a:=List(Filtered(List([0..5000], k->List([b+1..3*b+1], j->P[j-b+k])), i->Sum(i)/(2*b+1)=i[b+1]), m->m[b+1]); # Muniru A Asiru, Feb 15 2018
(PARI) isok(p) = {if (isprime(p), k = primepi(p); if (k >6, sum(i=k-6, k+6, prime(i)) == 13*p; ); ); } \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 26 2004
STATUS
approved