login
A096703
Balanced primes of order eleven.
17
173, 353, 631, 827, 3329, 4723, 13693, 17789, 20947, 21059, 21503, 23563, 23599, 27751, 29759, 35419, 36781, 37991, 44939, 52021, 57163, 57269, 57719, 59663, 68713, 70529, 70879, 71399, 75541, 76949, 78301, 79621, 94399, 101929, 104759
OFFSET
1,1
LINKS
EXAMPLE
173 is a member because 173 = (109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233)/23 = 3979/23.
MATHEMATICA
Transpose[ Select[ Partition[ Prime[ Range[10000]], 23, 1], #[[12]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[8]] + #[[9]] + #[[10]] + #[[11]] + #[[13]] + #[[14]] + #[[15]] + #[[16]] + #[[17]] + #[[18]] + #[[19]] + #[[20]] + #[[21]] + #[[22]] + #[[23]])/22 &]][[12]]
Transpose[Select[Partition[Prime[Range[11000]], 23, 1], Mean[#] == #[[12]]&]][[12]] (* Harvey P. Dale, Nov 06 2011 *)
PROG
(GAP) P:=Filtered([1..150000], IsPrime);;
a:=List(Filtered(List([0..12000], k->List([1..23], j->P[j+k])), i->Sum(i)/23=i[12]), m->m[12]); # Muniru A Asiru, Mar 04 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 26 2004
STATUS
approved