login
A096701
Balanced primes of order nine.
18
983, 2351, 4019, 4093, 4957, 8731, 10009, 10211, 10271, 11549, 11593, 12809, 13831, 17971, 21647, 25633, 30313, 32411, 33911, 34283, 37277, 37511, 38711, 39749, 41617, 41737, 42299, 46643, 48809, 49121, 49451, 51599, 53381, 54541, 54559
OFFSET
1,1
EXAMPLE
983 is a member because 983 = (919 + 929 + 937 + 941 + 947 + 953 + 967 + 971 + 977 + 983 + 991 + 997 + 1009 + 1013 + 1019 + 1021 + 1031 + 1033 + 1039)/19 = 18677/19.
MATHEMATICA
Transpose[ Select[ Partition[ Prime[ Range[7500]], 19, 1], #[[10]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[8]] + #[[9]] + #[[11]] + #[[12]] + #[[13]] + #[[14]] + #[[15]] + #[[16]] + #[[17]] + #[[18]] + #[[19]])/18 &]][[10]]
#[[10]] & /@ Select[Partition[Prime[Range[7500]], 19, 1], #[[10]] == Mean[#] &] (* Zak Seidov, Mar 01 2017 *)
PROG
(GAP) P:=Filtered([1..80000], IsPrime);;
a:=List(Filtered(List([0..6000], k->List([10..28], j->P[j-9+k])), i->
Sum(i)/19=i[10]), m->m[10]); # Muniru A Asiru, Feb 14 2018
(PARI) isok(p) = {if (isprime(p), k = primepi(p); if (k > 9, sum(i=k-9, k+9, prime(i)) == 19*p; ); ); } \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 26 2004
STATUS
approved