login
A351665
Discriminants of imaginary quadratic fields with class number 27 (negated).
1
983, 1231, 1399, 1607, 1759, 1879, 1999, 3271, 3299, 3943, 4903, 6007, 6011, 7699, 8867, 10531, 10939, 11003, 11027, 11383, 11491, 11779, 11939, 13411, 14243, 14723, 15107, 15739, 16411, 16547, 17443, 17627, 17659, 17747, 18587, 18787, 18859, 19051, 19427
OFFSET
1,1
COMMENTS
Sequence contains 93 terms; largest is 103387.
The class group of Q[sqrt(-d)] is isomorphic to C_9 X C_3 for d = 3299, 19427, 34603, 89923, and 98443. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_27.
LINKS
Eric Weisstein's World of Mathematics, Class Number
PROG
(Sage)
ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
[-a[0] for a in ls if a[1] == 27]
(PARI) isok(n) = {isfundamental(-n) && quadclassunit(-n).no == 27}; \\ Michel Marcus, Mar 02 2022
KEYWORD
nonn,fini,full
AUTHOR
Andy Huchala, Feb 16 2022
STATUS
approved