login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A351663
Perfect powers that are divisible by 7.
1
49, 196, 343, 441, 784, 1225, 1764, 2401, 2744, 3136, 3969, 4900, 5929, 7056, 8281, 9261, 9604, 11025, 12544, 14161, 15876, 16807, 17689, 19600, 21609, 21952, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 42875, 44100, 47089, 50176, 53361, 56644
OFFSET
1,1
COMMENTS
Terms are multiples of 49, since no perfect power divisible by 7 can have a 7-adic valuation below 2.
LINKS
FORMULA
a(n) has the form (7*m)^k for some m > 0 and k > 1.
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/7^k = 0.0371288923... - Amiram Eldar, Jul 02 2022
EXAMPLE
196 is a term since 196 = (2*7)^2 is a power of a multiple of 7.
MAPLE
q:= n-> igcd(seq(i[2], i=ifactors(n)[2]))>1:
select(q, [49*i$i=1..2000])[]; # Alois P. Heinz, May 05 2022
MATHEMATICA
Select[49*Range[1200], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
PROG
(PARI) isok(k) = ispower(k) && !(k % 7)
CROSSREFS
Intersection of A001597 and A008589.
Other perfect powers: A075090, A075109, A353238, A353152.
Sequence in context: A251214 A158638 A198386 * A016982 A157919 A297895
KEYWORD
nonn,easy
AUTHOR
Marco Ripà, May 04 2022
STATUS
approved