login
A016982
a(n) = (7*n)^2.
2
0, 49, 196, 441, 784, 1225, 1764, 2401, 3136, 3969, 4900, 5929, 7056, 8281, 9604, 11025, 12544, 14161, 15876, 17689, 19600, 21609, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 44100, 47089, 50176, 53361, 56644, 60025, 63504, 67081, 70756, 74529, 78400
OFFSET
0,2
FORMULA
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/294.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/588.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/7)/(Pi/7).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/7)/(Pi/7). (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 49*x*(1 + x)/(1-x)^3.
E.g.f.: 49*x*(1 + x)*exp(x).
a(n) = 49*A000290(n) = A008589(n)^2 = A000290(A008589(n)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
PROG
(Magma) [(7*n)^2: n in [0..50]]; // Vincenzo Librandi, May 21 2011
(PARI) a(n)=(7*n)^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A158638 A198386 A351663 * A157919 A297895 A204709
KEYWORD
nonn,easy
STATUS
approved