login
A016981
Expansion of 1/((1-3x)(1-4x)(1-10x)).
1
1, 17, 207, 2245, 23231, 235677, 2370967, 23768645, 237928911, 2380278637, 23806803527, 238084281045, 2380908324991, 23809346902397, 238094528416887, 2380949536089445, 23809512411623471, 238095192448290957
OFFSET
0,2
FORMULA
a(0)=1, a(1)=17, a(2)=207, a(n)=17*a(n-1)-82*a(n-2)+120*a(n-3). - Harvey P. Dale, Aug 25 2012
a(n) = 9*3^n/7 -8*4^n/3 +50*10^n/21. - R. J. Mathar, Jun 23 2013
a(n) = 14*a(n-1) -40*a(n-2) +3^n for n>1, a(0)=1, a(1)=17. - Vincenzo Librandi, Jun 26 2013
MATHEMATICA
CoefficientList[Series[1/((1-3x)(1-4x)(1-10x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{17, -82, 120}, {1, 17, 207}, 30] (* Harvey P. Dale, Aug 25 2012 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-4*x)*(1-10*x)))); // Vincenzo Librandi, Jun 26 2013
CROSSREFS
Sequence in context: A021092 A219124 A246989 * A158009 A158005 A158006
KEYWORD
nonn,easy
AUTHOR
STATUS
approved