login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157919
a(n) = 50*n^2 - 1.
2
49, 199, 449, 799, 1249, 1799, 2449, 3199, 4049, 4999, 6049, 7199, 8449, 9799, 11249, 12799, 14449, 16199, 18049, 19999, 22049, 24199, 26449, 28799, 31249, 33799, 36449, 39199, 42049, 44999, 48049, 51199, 54449, 57799, 61249, 64799, 68449, 72199, 76049, 79999
OFFSET
1,1
COMMENTS
The identity (50*n^2 - 1)^2 - (625*n^2 - 25)*(2*n)^2 = 1 can be written as a(n)^2 - A157918(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 10 2012
FORMULA
From Vincenzo Librandi, Feb 10 2012: (Start)
G.f.: -x*(49 + 52*x - x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(5*sqrt(2)))*Pi/(5*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(5*sqrt(2)))*Pi/(5*sqrt(2)) - 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {49, 199, 449}, 50] (* Vincenzo Librandi, Feb 10 2012 *)
50 Range[40]^2-1 (* Harvey P. Dale, Dec 15 2018 *)
PROG
(Magma) I:=[49, 199, 449]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 10 2012
(PARI) for(n=1, 40, print1(50*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 10 2012
CROSSREFS
Sequence in context: A198386 A351663 A016982 * A297895 A204709 A192359
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 09 2009
STATUS
approved