login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192359
Numerator of h(n+6) - h(n), where h(n) = Sum_{k=1..n} 1/k.
2
49, 223, 341, 2509, 2131, 20417, 18107, 30233, 96163, 1959, 36177, 51939, 436511, 598433, 80507, 532541, 1388179, 1785181, 378013, 95003, 1181909, 4370849, 2671363, 3240049, 1560647, 9333997, 5547947, 2185691, 5138581, 1201967, 10493071, 12159157, 28060691, 32250013
OFFSET
0,1
COMMENTS
Numerator of (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/((n+1)*(n+2)*...*(n+6)).
(2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,2,3,3]
p(n) is of period 9, repeating [2,2,2,1,1,1,1,1,1]
q1(n) is of period 5, repeating [0,0,0,0,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].
LINKS
FORMULA
a(n) = (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/(2^(P(0,4,2,n)+2) * 3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))), where P(x,y,z,n) = floor(((n+x)mod y)/z).
MAPLE
h:= n-> sum(1/k, k=1..n):seq(numer(h(n+6)-h(n)), n=0..33);
P:=(x, y, z, n)-> floor(((n+x)mod y)/z):
a:=n->(2*n+7)*(3*n^4+42*n^3+203*n^2+392*n+252)/(2^(P(0, 4, 2, n)+2)*3^(P(6, 9, 6, n)+1)*5^(P(0, 5, 4, n)+P(15, 25, 24, n))):
seq(a(n), n=0..25);
MATHEMATICA
Numerator[Table[HarmonicNumber[n+6]-HarmonicNumber[n], {n, 0, 40}]] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(PARI) h(n) = sum(k=1, n, 1/k);
a(n) = numerator(h(n+6)-h(n)); \\ Michel Marcus, Apr 15 2017
(Magma) [49] cat [Numerator(HarmonicNumber(n+6) - HarmonicNumber(n)): n in [1..40]]; // G. C. Greubel, Oct 20 2018
(GAP) List(List([0..35], n->Sum([1..n+6], k->(1/k))-Sum([1..n], k->(1/k))), NumeratorRat); # Muniru A Asiru, Oct 21 2018
CROSSREFS
KEYWORD
nonn,frac,look
AUTHOR
Gary Detlefs, Jun 28 2011
STATUS
approved