Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:45:57
%S 49,223,341,2509,2131,20417,18107,30233,96163,1959,36177,51939,436511,
%T 598433,80507,532541,1388179,1785181,378013,95003,1181909,4370849,
%U 2671363,3240049,1560647,9333997,5547947,2185691,5138581,1201967,10493071,12159157,28060691,32250013
%N Numerator of h(n+6) - h(n), where h(n) = Sum_{k=1..n} 1/k.
%C Numerator of (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/((n+1)*(n+2)*...*(n+6)).
%C (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
%C m(n) is of period 4, repeating [2,2,3,3]
%C p(n) is of period 9, repeating [2,2,2,1,1,1,1,1,1]
%C q1(n) is of period 5, repeating [0,0,0,0,1]
%C q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].
%H Robert Israel, <a href="/A192359/b192359.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/(2^(P(0,4,2,n)+2) * 3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))), where P(x,y,z,n) = floor(((n+x)mod y)/z).
%p h:= n-> sum(1/k,k=1..n):seq(numer(h(n+6)-h(n)), n=0..33);
%p P:=(x,y,z,n)-> floor(((n+x)mod y)/z):
%p a:=n->(2*n+7)*(3*n^4+42*n^3+203*n^2+392*n+252)/(2^(P(0,4,2,n)+2)*3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))):
%p seq(a(n), n=0..25);
%t Numerator[Table[HarmonicNumber[n+6]-HarmonicNumber[n],{n,0,40}]] (* _Harvey P. Dale_, Mar 27 2015 *)
%o (PARI) h(n) = sum(k=1, n, 1/k);
%o a(n) = numerator(h(n+6)-h(n)); \\ _Michel Marcus_, Apr 15 2017
%o (Magma) [49] cat [Numerator(HarmonicNumber(n+6) - HarmonicNumber(n)): n in [1..40]]; // _G. C. Greubel_, Oct 20 2018
%o (GAP) List(List([0..35],n->Sum([1..n+6],k->(1/k))-Sum([1..n],k->(1/k))),NumeratorRat); # _Muniru A Asiru_, Oct 21 2018
%Y Cf. A188386, A189642, A189998, A021913.
%K nonn,frac,look
%O 0,1
%A _Gary Detlefs_, Jun 28 2011