login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192356
Coefficients of x in the reduction of the polynomial p(n,x) = ((x+2)^n + (x-2)^n)/2 by x^2->x+2.
2
0, 1, 1, 15, 29, 211, 561, 3095, 9829, 46971, 164921, 728575, 2707629, 11450531, 43942081, 181348455, 708653429, 2884834891, 11388676041, 46006694735, 182670807229, 734751144051, 2926800830801, 11743814559415, 46865424529029, 187791199242011, 750176293590361
OFFSET
1,4
COMMENTS
For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232.
Direct sums can be obtained for A192355 and A192356 in the following way. The polynomials p_{n}(x) can be given in series form by p_{n}(x) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*4*k*x^(n-2*k). For the reduction x^2 -> x+2 then the general form can be seen as x^n -> J_{n}*x + phi_{n}, where J_{n} = A001045(n) are the Jacobsthal numbers and phi_{n} = A078008. The reduction of p_{n}(x) now takes the form p_{n}(x) = x * Sum_{k=0..floor(n/2)} binomial(n,2*k)*4^k*J_{n-2*k} + Sum_{k=0..floor(n/2)} binomial(n,2*k)*4^k*phi_{n-2*k}. Evaluating the series leads to p_{n}(x) = x * (4^n - (-3)^n - 1 + 2^n*delta(n,0))/6 + (4^n + 2*(-3)^n + 2 + 2^n*delta(n,0))/6, where delta(n,k) is the Kronecker delta. - G. C. Greubel, Oct 29 2018
FORMULA
Empirical g.f.: x^2*(1-x+2*x^2)/((x-1)*(3*x+1)*(4*x-1)). - Colin Barker, Sep 12 2012
From G. C. Greubel, Oct 28 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 4^k * J_{n-2*k}, where J_{n} = A001045(n) are the Jacobsthal numbers.
a(n) = (4^n - (-3)^n - 1 + 2^n*delta(n,0))/6, with delta(n,0) = 1 if n=0, 0 otherwise. (End)
MATHEMATICA
(See A192355.)
Join[{0}, Table[(4^n - (-3)^n - 1)/6, {n, 1, 50}]] (* G. C. Greubel, Oct 20 2018 *)
PROG
(PARI) for(n=0, 50, print1(if(n==0, 0, (4^n - (-3)^n - 1)/6), ", ")) \\ G. C. Greubel, Oct 20 2018
(Magma) [0] cat [(4^n - (-3)^n - 1)/6: n in [1..50]]; // G. C. Greubel, Oct 20 2018
CROSSREFS
Sequence in context: A146427 A202512 A014095 * A350468 A196184 A201136
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 29 2011
STATUS
approved