login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014095 Molien series for real extraspecial group 2^{1+2*3} of degree 8 and order 128 formed from tensor products of Pauli matrices (0,1, 1,0) and (1,0, 0,-1). 5
1, 1, 15, 29, 135, 310, 870, 1830, 3993, 7535, 14157, 24427, 41535, 66812, 105740, 160956, 241281, 351405, 504811, 709225, 984423, 1342418, 1811250, 2408770, 3173625, 4131387, 5334057, 6817175, 8649279, 10878520, 13593624, 16858424, 20785985, 25459353 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
A. R. Calderbank, R. H. Hardin, E. M. Rains, P. W. Shor and N. J. A. Sloane, A Group-Theoretic Framework for the Construction of Packings in Grassmannian Spaces, arXiv:math.CO/0208002, J. Algebraic Combinatorics, 9 (1999), 129-140.
Index entries for linear recurrences with constant coefficients, signature (4,-2,-12,17,8,-28,8,17,-12,-2,4,-1).
FORMULA
G.f.: (t^16 - 3*t^14 + 13*t^12 - 17*t^10 + 44*t^8 - 17*t^6 + 13*t^4 - 3*t^2 + 1) / (t^2+1)^4/(t-1)^8/(t+1)^8 (not simplified).
G.f.: (x^8 - 3*x^7 + 13*x^6 - 17*x^5 + 44*x^4 - 17*x^3 + 13*x^2 - 3*x + 1) / ((x-1)^8*(x+1)^4). - Colin Barker, Jan 31 2013
a(n) = n*(n+1)*(n+2)*(2*n*(n+2)*(2*n^2+4*n-1) - 735*(-1)^n+915)/10080. - Bruno Berselli, Jan 31 2013
a(n) = 4*a(n-1) - 2*a(n-2) - 12*a(n-3) + 17*a(n-4) + 8*a(n-5) - 28*a(n-6) + 8*a(n-7) + 17*a(n-8) - 12*a(n-9) - 2*a(n-10) + 4*a(n-11) - a(n-12); a(0)=1, a(1)=1, a(2)=15, a(3)=29, a(4)=135, a(5)=310, a(6)=870, a(7)=1830, a(8)=3993, a(9)=7535, a(10)=14157, a(11)=24427. - Harvey P. Dale, Nov 13 2013
MAPLE
(t^16-3*t^14+13*t^12-17*t^10+44*t^8-17*t^6+13*t^4-3*t^2+1)/(t^2+1)^4/(t-1)^8/(t+1)^8:
seq(coeff(series(%, t, n+1), t, n), n=[(2*i)$i=0..30]);
MATHEMATICA
CoefficientList[Series[(x^8 - 3 x^7 + 13 x^6 - 17 x^5 + 44 x^4 - 17 x^3 + 13 x^2 - 3 x + 1)/((x-1)^8 (x+1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 19 2013 *)
LinearRecurrence[{4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1}, {1, 1, 15, 29, 135, 310, 870, 1830, 3993, 7535, 14157, 24427}, 40] (* Harvey P. Dale, Nov 13 2013 *)
PROG
(Magma) /* After Maple, for odd m: */ m:=67; R<t>:=PowerSeriesRing(Integers(), m); S:=Coefficients(R!((t^16-3*t^14+13*t^12-17*t^10+44*t^8-17*t^6+13*t^4-3*t^2+1)/(t^2+1)^4/(t-1)^8/(t+1)^8)); [S[2*i+1]: i in [0..m div 2]]; // Bruno Berselli, Jan 31 2013
CROSSREFS
Cf. A030533.
Sequence in context: A354163 A146427 A202512 * A192356 A350468 A196184
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 18:33 EST 2023. Contains 367693 sequences. (Running on oeis4.)