login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202512
Number of zero-sum -n..n arrays of 4 elements with first through third differences also in -n..n.
1
1, 15, 29, 75, 115, 217, 297, 479, 609, 887, 1091, 1493, 1765, 2315, 2689, 3399, 3875, 4777, 5373, 6491, 7213, 8555, 9439, 11041, 12061, 13947, 15157, 17331, 18719, 21221, 22809, 25663, 27453, 30659, 32699, 36301, 38545, 42567, 45089, 49527, 52303, 57205
OFFSET
1,2
COMMENTS
Row 4 of A202511.
LINKS
FORMULA
Empirical: a(n) = -a(n-1) +2*a(n-3) +4*a(n-4) +2*a(n-5) -a(n-6) -5*a(n-7) -5*a(n-8) -a(n-9) +2*a(n-10) +4*a(n-11) +2*a(n-12) -a(n-14) -a(n-15).
Empirical g.f.: x*(1 + 16*x + 44*x^2 + 102*x^3 + 156*x^4 + 212*x^5 + 219*x^6 + 208*x^7 + 153*x^8 + 100*x^9 + 46*x^10 + 18*x^11 + 2*x^12 - x^14) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2). - Colin Barker, Jun 01 2018
EXAMPLE
Some solutions for n=7:
.-3....1....2....7....6....5...-2....2....2....2....7...-2...-5...-1....2...-3
..0....2....2....2....1....4...-1...-1....1....3....2....1...-3....2....0....0
..2....2....1...-2...-2...-2....1...-3....0....0...-3....3....1....2....0....3
..1...-5...-5...-7...-5...-7....2....2...-3...-5...-6...-2....7...-3...-2....0
CROSSREFS
Cf. A202511.
Sequence in context: A211324 A354163 A146427 * A014095 A192356 A350468
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2011
STATUS
approved