login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192357
Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+3)^n+(x-3)^n) by x^2->x+1.
2
1, 0, 10, 1, 137, 93, 2219, 3410, 39586, 94467, 750823, 2317249, 14833565, 53482716, 301162922, 1194377453, 6225350029, 26179063845, 130188268471, 567580989502, 2742763551458, 12225952022559, 58052436966875, 262325736910601
OFFSET
1,3
COMMENTS
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
Conjecture: a(n) = 2*a(n-1)+19*a(n-2)-20*a(n-3)-55*a(n-4). G.f.: x*(x^3-9*x^2-2*x+1)/((5*x^2+5*x+1)*(11*x^2-7*x+1)). [Colin Barker, Nov 22 2012]
MATHEMATICA
q[x_] := x + 1; d = 3;
p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192357 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192358 *)
CROSSREFS
Sequence in context: A185544 A048882 A378836 * A156286 A049223 A308282
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 29 2011
STATUS
approved