OFFSET
0,1
COMMENTS
a(n) = Numerator of (5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/((n+1)*(n+2)*(n+3)*(n+4)*(n+5)).
(5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/a(n) can be factored into 2^p(n)* 3^q(n) where p(n) is a sequence of period 4 repeating [1,2,1,3] and q(n) is of period 9,repeating [0,2,2,0,1,1,0,1,1].
p(n) = A131743(n) + 1.
q(n) = A011655(n) + [0,2,2,0,0,0,0,0,0]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/(2^q(n)*3^(P(9,n-1) + P(9,n-2) + 1 - P(3,n))), where q(n) = (1-(-1)^n)*(3+i^(n+1))/4 + 1 and P(k,n) = floor(1/2*cos(2*n*Pi/k)+1/2).
MAPLE
h:= n->sum(1/k, k=1..n):seq(numer(h(n+5)-h(n)), n=0..28);
q:=n-> (1-(-1)^n)*(3+I^(n+1))/4+1:
P:=(k, n)-> floor(1/2*cos(2*n*Pi/k)+1/2):
seq( (5*n^4+60*n^3+255*n^2+450*n+274)/(2^q(n)*3^(P(9, n-1)+P(9, n-2)+1-P(3, n))), n=0..28)
MATHEMATICA
Numerator[Table[HarmonicNumber[n+5]-HarmonicNumber[n], {n, 0, 30}]] (* Harvey P. Dale, Sep 15 2016 *)
PROG
(Magma) [137] cat [Numerator(HarmonicNumber(n+5)-HarmonicNumber(n)): n in [0..30]]; // G. C. Greubel, Jan 11 2018
(Python)
from sympy import harmonic, numer
print([numer(harmonic(n+5) - harmonic(n)) for n in range(0, 30)])
# Javier Rivera Romeu, May 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary Detlefs, May 03 2011
STATUS
approved