login
A189996
Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].
1
2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0
OFFSET
0,1
COMMENTS
Bott proved that the n-th homotopy group of the stable orthogonal group is Z/(a(n)*Z), where Z is the integers and Z/(0*Z), Z/(1*Z), Z/(2*Z) are the cyclic groups of order infinity, 1, 2, respectively. For details, see the Wikipedia orthogonal group link.
For references and additional links, see the Wikipedia Bott periodicity link.
LINKS
Eric Weisstein's World of Mathematics, Bott Periodicity Theorem
Wikipedia, Bott periodicity
Wikipedia, Orthogonal group
FORMULA
a(n) = 2, 2, 1, 0, 1, 1, 1, 0 if n == 0, 1, 2, 3, 4, 5, 6, 7 (mod 8), respectively.
From Colin Barker, Nov 02 2019: (Start)
G.f.: (2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>7.
(End)
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1}, {2, 2, 1, 0, 1, 1, 1, 0}, 104] (* Ray Chandler, Aug 25 2015 *)
PadRight[{}, 120, {2, 2, 1, 0, 1, 1, 1, 0}] (* Harvey P. Dale, Jun 13 2017 *)
PROG
(PARI) a(n)=[2, 2, 1, 0, 1, 1, 1, 0][n%8+1] \\ Charles R Greathouse IV, Jul 13 2016
(PARI) Vec((2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^90)) \\ Colin Barker, Nov 02 2019
CROSSREFS
Cf. A048648.
Sequence in context: A016372 A016342 A016385 * A016390 A327688 A055800
KEYWORD
nonn,easy
AUTHOR
Jonathan Sondow, Jun 17 2011
STATUS
approved